skip to main content


Title: CFL Optimized Forward–Backward Runge–Kutta Schemes for the Shallow-Water Equations
Abstract

We present the formulation and optimization of a Runge–Kutta-type time-stepping scheme for solving the shallow-water equations, aimed at substantially increasing the effective allowable time step over that of comparable methods. This scheme, called FB-RK(3,2), uses weighted forward–backward averaging of thickness data to advance the momentum equation. The weights for this averaging are chosen with an optimization process that employs a von Neumann–type analysis, ensuring that the weights maximize the admittable Courant number. Through a simplified local truncation error analysis and numerical experiments, we show that the method is at least second-order in time for any choice of weights and exhibits low dispersion and dissipation errors for well-resolved waves. Further, we show that an optimized FB-RK(3,2) can take time steps up to 2.8 times as large as a popular three-stage, third-order strong stability-preserving Runge–Kutta method in a quasi-linear test case. In fully nonlinear shallow-water test cases relevant to oceanic and atmospheric flows, FB-RK(3,2) outperforms SSPRK3 in admittable time step by factors roughly between 1.6 and 2.2, making the scheme approximately twice as computationally efficient with little to no effect on solution quality.

Significance Statement

The purpose of this work is to develop and optimize time-stepping schemes for models relevant to oceanic and atmospheric flows. Specifically, for the shallow-water equations we optimize for schemes that can take time steps as large as possible while retaining solution quality. We find that our optimized schemes can take time steps between 1.6 and 2.2 times larger than schemes that cost the same number of floating point operations, translating directly to a corresponding speedup. Our ultimate goal is to use these schemes in climate-scale simulations.

 
more » « less
NSF-PAR ID:
10478971
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Monthly Weather Review
Volume:
151
Issue:
12
ISSN:
0027-0644
Format(s):
Medium: X Size: p. 3191-3208
Size(s):
["p. 3191-3208"]
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper, we discuss the stability and error estimates of the fully discrete schemes for linear conservation laws, which consists of an arbitrary Lagrangian–Eulerian discontinuous Galerkin method in space and explicit total variation diminishing Runge–Kutta (TVD-RK) methods up to third order accuracy in time. The scaling arguments and the standard energy analysis are the key techniques used in our work. We present a rigorous proof to obtain stability for the three fully discrete schemes under suitable CFL conditions. With the help of the reference cell, the error equations are easy to establish and we derive the quasi-optimal error estimates in space and optimal convergence rates in time. For the Euler-forward scheme with piecewise constant elements, the second order TVD-RK method with piecewise linear elements and the third order TVD-RK scheme with polynomials of any order, the usual CFL condition is required, while for other cases, stronger time step restrictions are needed for the results to hold true. More precisely, the Euler-forward scheme needs τ ≤ ρh 2 and the second order TVD-RK scheme needs $ \tau \le \rho {h}^{\frac{4}{3}}$ for higher order polynomials in space, where τ and h are the time and maximum space step, respectively, and ρ is a positive constant independent of τ and h . 
    more » « less
  2. null (Ed.)
    The Langevin Dynamics (LD) method (also known in the literature as Brownian Dynamics) is routinely used to simulate aerosol particle trajectories for transport rate constant calculations as well as to understand aerosol particle transport in internal and external fluid flows. This tutorial intends to explain the methodological details of setting up a LD simulation of a population of aerosol particles and to deduce rate constants from an ensemble of classical trajectories. We discuss the applicability and limitations of the translational Langevin equation to model the combined stochastic and deterministic motion of particles in fields of force or fluid flow. The drag force and stochastic “diffusion” force terms that appear in the Langevin equation are discussed elaborately, along with a summary of common forces relevant to aerosol systems (electrostatic, gravity, van der Waals, …); a commonly used first order and a fourth order Runge-Kutta time stepping schemes for linear stochastic ordinary differential equations are presented. A MATLAB® implementation of a LD code for simulating particle settling under gravity using the first order scheme is included for illustration. Scaling analysis of aerosol transport processes and the selection of timestep and domain size for trajectory simulations are demonstrated through two specific aerosol processes: particle diffusion charging and coagulation. Fortran® implementations of the first order and fourth order time-stepping schemes are included for simulating the 3D motion of a particle in a periodic domain. Potential applications and caveats to the usage of LD are included as a summary. 
    more » « less
  3. We present a study on numerical solutions of nonlinear ordinary differential equations by applying Runge-Kutta-Fehlberg (RKF) method, a well-known adaptive Runge-kutta method. The adaptive Runge-kutta methods use embedded integration formulas which appear in pairs. Typically adaptive methods monitor the truncation error at each integration step and automatically adjust the step size to keep the error within prescribed limit. Numerical solutions to different nonlinear initial value problems (IVPs) attained by RKF method are compared with corresponding classical Runge-Kutta (RK4) approximations in order to investigate the computational superiority of the former. The resulting gain in efficiency is compatible with the theoretical prediction. Moreover, with the aid of a suitable time-stepping scheme, we show that the RKF method invariably requires less number of steps to arrive at the right endpoint of the finite interval where the IVP is being considered. 
    more » « less
  4. The thermal radiative transfer (TRT) equations form an integro-differential system that describes the propagation and collisional interactions of photons. Computing accurate and efficient numerical solutions TRT are challenging for several reasons, the first of which is that TRT is defined on a high-dimensional phase space that includes the independent variables of time, space, and velocity. In order to reduce the dimensionality of the phase space, classical approaches such as the P$_N$ (spherical harmonics) or the S$_N$ (discrete ordinates) ansatz are often used in the literature. In this work, we introduce a novel approach: the hybrid discrete (H$^T_N$) approximation to the radiative thermal transfer equations. This approach acquires desirable properties of both P$_N$ and S$_N$, and indeed reduces to each of these approximations in various limits: H$^1_N$ $\equiv$ P$_N$ and H$^T_0$ $\equiv$ S$_T$. We prove that H$^T_N$ results in a system of hyperbolic partial differential equations for all $T\ge 1$ and $N\ge 0$. Another challenge in solving the TRT system is the inherent stiffness due to the large timescale separation between propagation and collisions, especially in the diffusive (i.e., highly collisional) regime. This stiffness challenge can be partially overcome via implicit time integration, although fully implicit methods may become computationally expensive due to the strong nonlinearity and system size. On the other hand, explicit time-stepping schemes that are not also asymptotic-preserving in the highly collisional limit require resolving the mean-free path between collisions, making such schemes prohibitively expensive. In this work we develop a numerical method that is based on a nodal discontinuous Galerkin discretization in space, coupled with a semi-implicit discretization in time. In particular, we make use of a second order explicit Runge-Kutta scheme for the streaming term and an implicit Euler scheme for the material coupling term. Furthermore, in order to solve the material energy equation implicitly after each predictor and corrector step, we linearize the temperature term using a Taylor expansion; this avoids the need for an iterative procedure, and therefore improves efficiency. In order to reduce unphysical oscillation, we apply a slope limiter after each time step. Finally, we conduct several numerical experiments to verify the accuracy, efficiency, and robustness of the H$^T_N$ ansatz and the numerical discretizations. 
    more » « less
  5. ABSTRACT

    This paper presents high-order Runge–Kutta (RK) discontinuous Galerkin methods for the Euler–Poisson equations in spherical symmetry. The scheme can preserve a general polytropic equilibrium state and achieve total energy conservation up to machine precision with carefully designed spatial and temporal discretizations. To achieve the well-balanced property, the numerical solutions are decomposed into equilibrium and fluctuation components that are treated differently in the source term approximation. One non-trivial challenge encountered in the procedure is the complexity of the equilibrium state, which is governed by the Lane–Emden equation. For total energy conservation, we present second- and third-order RK time discretization, where different source term approximations are introduced in each stage of the RK method to ensure the conservation of total energy. A carefully designed slope limiter for spherical symmetry is also introduced to eliminate oscillations near discontinuities while maintaining the well-balanced and total-energy-conserving properties. Extensive numerical examples – including a toy model of stellar core collapse with a phenomenological equation of state that results in core bounce and shock formation – are provided to demonstrate the desired properties of the proposed methods, including the well-balanced property, high-order accuracy, shock-capturing capability, and total energy conservation.

     
    more » « less