skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Simultaneous integration and modularity underlie the exceptional body shape diversification of characiform fishes
Abstract Evolutionary biology has long striven to understand why some lineages diversify exceptionally while others do not. Most studies have focused on how extrinsic factors can promote differences in diversification dynamics, but a clade’s intrinsic modularity and integration can also catalyze or restrict its evolution. Here, we integrate geometric morphometrics, phylogenetic comparative methods and visualizations of covariance to infer the presence of distinct modules in the body plan of Characiformes, an ecomorphologically diverse fish radiation. Strong covariances reveal a cranial module, and more subtle patterns support a statistically significant subdivision of the postcranium into anterior (precaudal) and posterior (caudal) modules. We uncover substantial covariation among cranial and postcranial landmarks, indicating body-wide evolutionary integration as lineages transition between compressiform and fusiform body shapes. A novel method of matrix subdivision reveals that within- and among-module covariation contributes substantially to the overall eigenstructure of characiform morphospace, and that both phenomena led to biologically important divergence among characiform lineages. Functional integration between the cranium and post-cranial skeleton appears to have allowed lineages to optimize the aspect ratio of their bodies for locomotion, while the capacity for independent change in the head, body and tail likely eased adaptation to diverse dietary and hydrological regimes. These results reinforce a growing consensus that modularity and integration synergize to promote diversification.  more » « less
Award ID(s):
1902694
PAR ID:
10475421
Author(s) / Creator(s):
; ;
Publisher / Repository:
Oxford Academic
Date Published:
Journal Name:
Evolution
Volume:
77
Issue:
3
ISSN:
0014-3820
Page Range / eLocation ID:
746 to 762
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Modular evolution, the relatively independent evolution of body parts, may promote high morphological disparity in a clade. Conversely, integrated evolution via stronger covariation of parts may limit disparity. However, integration can also promote high disparity by channelling morphological evolution along lines of least resistance—a process that may be particularly important in the accumulation of disparity in the many invertebrate systems having accretionary growth. We use a time-calibrated phylogenetic hypothesis and high-density, three-dimensional semilandmarking to analyse the relationship between modularity, integration and disparity in the most diverse extant bivalve family: the Veneridae. In general, venerids have a simple, two-module parcellation of their body that is divided into features of the calcium carbonate shell and features of the internal soft anatomy. This division falls more along developmental than functional lines when placed in the context of bivalve anatomy and biomechanics. The venerid body is tightly integrated in absolute terms, but disparity appears to increase with modularity strength among subclades and ecologies. Thus, shifts towards more mosaic evolution beget higher morphological variance in this speciose family. 
    more » « less
  2. Abstract Complex structures, like the vertebrate skull, are composed of numerous elements or traits that must develop and evolve in a coordinated manner to achieve multiple functions. The strength of association among phenotypic traits (i.e., integration), and their organization into highly-correlated, semi-independent subunits termed modules, is a result of the pleiotropic and genetic correlations that generate traits. As such, patterns of integration and modularity are thought to be key factors constraining or facilitating the evolution of phenotypic disparity by influencing the patterns of variation upon which selection can act. It is often hypothesized that selection can reshape patterns of integration, parceling single structures into multiple modules or merging ancestrally semi-independent traits into a strongly correlated unit. However, evolutionary shifts in patterns of trait integration are seldom assessed in a unified quantitative framework. Here, we quantify patterns of evolutionary integration among regions of the archosaur skull to investigate whether patterns of cranial integration are conserved or variable across this diverse group. Using high-dimensional geometric morphometric data from 3D surface scans and computed tomography scans of modern birds (n = 352), fossil non-avian dinosaurs (n = 27), and modern and fossil mesoeucrocodylians (n = 38), we demonstrate that some aspects of cranial integration are conserved across these taxonomic groups, despite their major differences in cranial form, function, and development. All three groups are highly modular and consistently exhibit high integration within the occipital region. However, there are also substantial divergences in correlation patterns. Birds uniquely exhibit high correlation between the pterygoid and quadrate, components of the cranial kinesis apparatus, whereas the non-avian dinosaur quadrate is more closely associated with the jugal and quadratojugal. Mesoeucrocodylians exhibit a slightly more integrated facial skeleton overall than the other grades. Overall, patterns of trait integration are shown to be stable among archosaurs, which is surprising given the cranial diversity exhibited by the clade. At the same time, evolutionary innovations such as cranial kinesis that reorganize the structure and function of complex traits can result in modifications of trait correlations and modularity. 
    more » « less
  3. Synopsis The concept of modularity is fundamental to understanding the evolvability of morphological structures and is considered a central framework for the exploration of functionally and developmentally related subsets of anatomical traits. In this study, we explored evolutionary patterns of modularity and integration in the 4-bar linkage biomechanical system of the skull in the fish family Labridae (wrasses and parrotfishes). We measured evolutionary modularity and rates of shape diversification of the skull partitions of three biomechanical 4-bar linkage systems using 205 species of wrasses (family: Labridae) and a three-dimensional geometric morphometrics data set of 200 coordinates. We found support for a two-module hypothesis on the family level that identifies the bones associated with the three linkages as being a module independent from a module formed by the remainder of the skull (neurocranium, nasals, premaxilla, and pharyngeal jaws). We tested the patterns of skull modularity for four tribes in wrasses: hypsigenyines, julidines, cheilines, and scarines. The hypsigenyine and julidine groups showed the same two-module hypothesis for Labridae, whereas cheilines supported a four-module hypothesis with the three linkages as independent modules relative to the remainder of the skull. Scarines showed increased modularization of skull elements, where each bone is its own module. Diversification rates of modules show that linkage modules have evolved at a faster net rate of shape change than the remainder of the skull, with cheilines and scarines exhibiting the highest rate of evolutionary shape change. We developed a metric of linkage planarity and found the oral jaw linkage system to exhibit high planarity, while the rest position of the hyoid linkage system exhibited increased three dimensionality. This study shows a strong link between phenotypic evolution and biomechanical systems, with modularity influencing rates of shape change in the evolution of the wrasse skull. 
    more » « less
  4. With diverse mechanical and sensory functions, the vertebrate cranium is a complex anatomical structure whose shifts between modularity and integration, especially in mechanical func- tion, have been implicated in adaptive diversification. Yet how me- chanical and sensory systems and their functions coevolve, as well as how their interrelationship contributes to phenotypic disparity, remain largely unexplored. To examine the modularity, integration, and evolutionary rates of sensory and mechanical structures within the head, we analyzed hard and soft tissue scans from ecologically diverse bats in the superfamily Noctilionoidea, a clade that ranges from insectivores and carnivores to frugivores and nectarivores. We identified eight regions that evolved in a coordinated fashion, thus recognizable as evolutionary modules: five associated with bite force and three linked to olfactory, visual, and auditory systems. Interrelationships among these modules differ between Neotropical leaf-nosed bats (family Phyllostomidae) and other noctilionoids. Consistent with the hypothesis that dietary transitions begin with changes in the capacity to detect novel food items followed by adap- tations to process them, peak rates of sensory module evolution pre- date those of some mechanical modules. We propose that the co- evolution of structures influencing bite force, olfaction, vision, and hearing constituted a structural opportunity that allowed the phyllostomid ancestor to take advantage of existing ecological op- portunities and contributed to the clade’s remarkable radiation. 
    more » « less
  5. null (Ed.)
    Evolutionary innovations are scattered throughout the tree of life, and have allowed the organisms that possess them to occupy novel adaptive zones. While the impacts of these innovations are well documented, much less is known about how these innovations arise in the first place. Patterns of covariation among traits across macroevolutionary time can offer insights into the generation of innovation. However, to date, there is no consensus on the role that trait covariation plays in this process. The evolution of cranial asymmetry in flatfishes (Pleuronectiformes) from within Carangaria was a rapid evolutionary innovation that preceded the colonization of benthic aquatic habitats by this clade, and resulted in one of the most bizarre body plans observed among extant vertebrates. Here, we use three-dimensional geometric morphometrics and a phylogenetic comparative toolkit to reconstruct the evolution of skull shape in carangarians, and quantify patterns of integration and modularity across the skull. We find that the evolution of asymmetry in flatfishes was a rapid process, resulting in the colonization of novel trait space, that was aided by strong integration that coordinated shape changes across the skull. Our findings suggest that integration plays a major role in the evolution of innovation by synchronizing responses to selective pressures across the organism. 
    more » « less