Abstract In post‐fire Siberian larch forests, where tree density can vary within a burn perimeter, shrubs constitute a substantial portion of the vegetation canopy. Leaf area index (LAI), defined as the one‐sided total green leaf area per unit ground surface area, is useful for characterizing variation in plant canopies. We estimated LAI with allometry for trees and tall shrubs (>0.5 and <1.5 m) across 26 sites with varying tree stem density (0.05–3.3 stems/m2) and canopy cover (4.6%–76.9%) in a uniformly‐aged mature Siberian larch forest that regenerated following a fire ∼75 years ago. We investigated relationships between tree density, tree LAI, and tall shrub LAI, and between LAI and satellite observations of Normalized Difference and Enhanced Vegetation Indices (NDVI and EVI). Across the density gradient, tree LAI increases with increasing tree density, while tall shrub LAI decreases, exhibiting no patterns in combined tree‐shrub LAI. We also found significant positive relationships between tall shrub LAI and NDVI/EVI from PlanetScope and Landsat imagery. These findings suggest that tall shrubs compensate for lower tree LAI in tree canopy gaps, forming a canopy with contiguous combined tree‐shrub LAI across the density gradient. Our findings suggest that NDVI and EVI are more sensitive to variation in tall shrub canopies than variation in tree canopies or combined tree‐shrub canopies in these ecosystems. The results improve our understanding of the relationships between forest density and tree and shrub leaf area and have implications for interpreting spatial variability in LAI, NDVI, and EVI in Siberian boreal forests.
more »
« less
Tall shrub (Alnus, Betula, Juniperus, Salix, and Shepherdia) densities at Brooks Range treelines, Alaska (2019-2022)
Stem counts of tall shrubs (height from 0.3 to greater than 2 meters) during 2019, 2020, 2021 and 2022 as sampled within n = 594 5-meter radius plots (area = 78.5 square meters), each centered on a selected white spruce adult called "Focal Tree". The purpose of this dataset was to examine spatial variation in tall shrub densities of the most important genera across the Brooks Range and in relation to local microclimates. It also provides a baseline for future shrub stem counts to determine changes in abundance.
more »
« less
- Award ID(s):
- 1748773
- PAR ID:
- 10475444
- Publisher / Repository:
- NSF Arctic Data Center
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Tall deciduous shrubs are critically important to carbon and nutrient cycling in high-latitude ecosystems. As Arctic regions warm, shrubs expand heterogeneously across their ranges, including within unburned terrain experiencing isometric gradients of warming. To constrain the effects of widespread shrub expansion in terrestrial and Earth System Models, improved knowledge of local-to-regional scale patterns, rates, and controls on decadal shrub expansion is required. Using fine-scale remote sensing, we modeled the drivers of patch-scale tall-shrub expansion over 68 years across the central Seward Peninsula of Alaska. Models show the heterogeneous patterns of tall-shrub expansion are not only predictable but have an upper limit defined by permafrost, climate, and edaphic gradients, two-thirds of which have yet to be colonized. These observations suggest that increased nitrogen inputs from nitrogen-fixing alders contributed to a positive feedback that advanced overall tall-shrub expansion. These findings will be useful for constraining and projecting vegetation-climate feedbacks in the Arctic.more » « less
-
Tall deciduous shrubs are critically important to carbon and nutrient cycling in high-latitude ecosystems. As Arctic regions warm, shrubs expand heterogeneously across their ranges, including within unburned terrain experiencing isometric gradients of warming. To constrain the effects of widespread shrub expansion in terrestrial and Earth System Models, improved knowledge of local to regional-scale patterns, rates, and controls on decadal shrub expansion is required. Here we map tall deciduous shrub canopies in the central Seward Peninsula of Alaska in 1950 using ~1 meter (m)-resolution aerial photographs from US Navy missions in three subsites (1950ShrubClass.tif and 1950AlderClass.tif) and in 2018 using 3m-resolution PlanetScope satellite imagery for the entire study region (SummerShrubExtent.tif and AlderExtent2017.tif). The timing of alder shrub senescence allowed us to separate the classification into alder and non-alder categories. We computed two change maps: one exclusively for alder and one including all deciduous tall shrubs. The change maps were modeled against a suite of environmental factors and the shrub change model was extended across the study region (SewardShrub.tif). The model was rerun for future scenarios with 10 (SewardMinus10PF.tif) and 30 (SewardMinus30PF.tif) percent reductions in permafrost probability to determine the likely effects of permafrost degradation on shrub extent.more » « less
-
Measurements of treeline white (Picea glauca) and black (P. mariana) spruce abundance during 2019, 2020, 2021 and 2022 as sampled within n = 695 5-meter (m) radius plots (area = 78.5 square meters), each centered on a selected white spruce adult called "Focal Tree". Measurements included height of stems between 0.5 and 1.4 m tall and diameter at 1.4 m for individuals taller than 1.4 m. Those individuals taller than 1.4 m tall were also stem mapped in polar coordinates with r = distance and theta as magnetic direction from a focal center white spruce tree. The purpose of this dataset was to examine spatial variation in treeline white spruce densities and basal area across the Brooks Range and in relation to local microclimates. It also provides a baseline for future stem mapping to determine changes in abundance.more » « less
-
Abstract Habitat connectivity is a key factor influencing species range dynamics. Rapid warming in the Arctic is leading to widespread heterogeneous shrub expansion, but impacts of these habitat changes on range dynamics for large herbivores are not well understood. We use the climate–shrub–moose system of northern Alaska as a case study to examine how shrub habitat will respond to predicted future warming, and how these changes may impact habitat connectivity and the distribution of moose (Alces alces). We used a 19 year moose location dataset, a 568 km transect of field shrub sampling, and forecasted warming scenarios with regional downscaling to map current and projected shrub habitat for moose on the North Slope of Alaska. The tall‐shrub habitat for moose exhibited a dendritic spatial configuration correlated with river corridor networks and mean July temperature. Warming scenarios predict that moose habitat will more than double by 2099. Forecasted warming is predicted to increase the spatial cohesion of the habitat network that diminishes effects of fragmentation, which improves overall habitat quality and likely expands the range of moose. These findings demonstrate how climate change may increase habitat connectivity and alter the distributions of shrub herbivores in the Arctic, including creation of novel communities and ecosystems.more » « less
An official website of the United States government
