Abstract Supplemental feeding can increase the overall health of animals but also can have variable effects on how animals defend themselves against parasites. However, the spatiotemporal effects of food supplementation on host–parasite interactions remain poorly understood, likely because large‐scale, coordinated efforts to investigate them are difficult.Here, we introduce the Nest Parasite Community Science Project, which is a community‐based science project that coordinates studies with bird nest box ‘stewards’ from the public and scientific community. This project was established to understand broad ecological patterns between hosts and their parasites.The goal of this study was to determine the effect of food supplementation on eastern bluebirds (Sialia sialis) and their nest parasite community across the geographic range of the bluebirds from 2018 to 2021. We received 674 nests from 69 stewards in 26 states in the eastern United States. Nest box stewards reported whether or not they provided mealworms or suet near nesting bluebirds, then they followed the nesting success of the birds (number of eggs laid and hatched, proportion that hatched, number and proportion of nestlings that successfully fledged). We then identified and quantified parasites in the nests.Overall, we found that food supplementation increased fledging success. The most common nest parasite taxon was the parasitic blow fly (Protocalliphora sialia), but a few nests contained fleas (Ceratophyllus idius,C. gallinaeandOrchopeas leucopus) and mites (Dermanyssusspp. andOrnithonyssusspp.). Blow flies were primarily found at northern latitudes, where food supplementation affected blow fly prevalence. However, the direction of this effect varied substantially in direction and magnitude across years. More stewards fed bluebirds at southern latitudes than at northern latitudes, which contradicts the findings of other community‐based science projects.Overall, food supplementation of birds was associated with increased host fitness but did not appear to play a consistent role in defence against these parasites across all years. Our study demonstrates the importance of coordinated studies across years and locations to understand the effects of environmental heterogeneity, including human‐based food supplementation, on host–parasite dynamics.
more »
« less
Co‐parasitism in the face of predation: Effects of natural enemies on a neotropical mockingbird
Abstract Co‐parasitism is ubiquitous and has important consequences for the ecology and evolution of wild host populations. Studies of parasite co‐infections remain limited in scope, with few experimental tests of the fitness consequences of multiple parasites, especially in natural populations.We measured the separate and combined effects ofPhilornis seguyinest flies and shiny cowbirdsMolothrus bonariensison the fitness of a shared host, the chalk‐browed mockingbird (Mimus saturninus) in Argentina.Using a two‐factor experimental approach, we manipulated the presence of nest flies and cowbirds in mockingbird nests and assessed their effects on mockingbird haemoglobin levels, begging and provisioning rates, body size, and fledging success. We also monitored rates of nest predation in relation to parasitism by flies and cowbirds.Nest flies reduced the haemoglobin concentration, body size, and fledging success of mockingbirds, likely because mockingbirds did not compensate for parasitism by begging more or feeding their nestlings more. Cowbirds also reduced the fledging success of mockingbirds, even though they had no detectable effect on haemoglobin or body size. Nests with cowbirds, which beg more than mockingbirds, attracted more nest predators. There was no significant interaction between the effects of flies and cowbirds on any component of mockingbird fitness. The combined effects of nest flies and cowbirds were strictly additive.In summary, we show that nest flies and cowbirds both reduce host fitness, but do not have interactive effects in co‐parasitized nests. Our results further suggest that predators exacerbate the effects of nest flies and cowbirds on their hosts. Our study shows that the fitness consequences of co‐parasitism are complex, especially in the context of community‐level interactions.
more »
« less
- Award ID(s):
- 2025085
- PAR ID:
- 10475476
- Publisher / Repository:
- Journal of Animal Ecology
- Date Published:
- Journal Name:
- Journal of Animal Ecology
- Volume:
- 92
- Issue:
- 10
- ISSN:
- 0021-8790
- Page Range / eLocation ID:
- 1992 to 2004
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Intensification of livestock production has reduced heterogeneity in vegetative structure in managed grasslands, which has been linked to widespread declines in grassland songbird populations throughout North America. Patch-burn grazing management aims to restore some of that heterogeneity in vegetative structure by burning discrete pasture sections, so that cattle preferentially graze in recently burned areas. Although patch-burn grazing can increase reproductive success of grassland songbirds, we know little about possible interactions with regional variation in predator communities or brood parasite abundance, or annual variation in weather conditions. Using six years of data from two tallgrass prairie sites in eastern Kansas, USA, we tested effects of patch-burn grazing on the rates of brood parasitism, clutch size, nest survival, and fledging success of three common grassland songbirds, Dickcissels (Spiza americana), Eastern Meadowlarks (Sturnella magna), and Grasshopper Sparrows (Ammodramus savannarum), among pastures managed with patch-burn grazing versus pastures that were annually burned and either grazed or ungrazed. Dickcissel nests experienced lower parasitism (72.8 ± 4.6% SE vs. 89.1 ± 2.2%) and Eastern Meadowlarks had higher nest survival (63.2 ± 20.5% vs. 16.5 ± 3.5%) in annually burned and ungrazed pastures than pastures managed with patch-burn grazing. However, average number of host fledglings per nesting attempt did not differ among management treatments for any species. Annual variation in weather conditions had a large effect on vegetation structure, but not on reproductive success. Probability of brood parasitism was consistently high (25.5‒84.7%) and nest survival was consistently low (9.9–16.9%) for all species pooled across treatments, sites, and years, indicating that combined effects of predation, parasitism and drought can offset potential benefits of patch-burn grazing management previously found in tallgrass prairies. Although differences in reproductive success among management treatments were minimal, patch-burn grazing management could still benefit population dynamics of grassland songbirds in areas where nest predators and brood parasites are locally abundant by providing suitable nesting habitat for bird species that require greater amounts of vegetation cover and litter, generally not present in burned pastures.more » « less
-
Abstract The patterns and drivers of pollen transport on insect bodies can have important consequences for plant reproductive success and floral evolution; however, they remain little studied. Recently, pollinator bodies have been further described as pollen competitive arenas, where pollen grains can compete for space, with implications for the evolution of pollen dispersal strategies and plant community assembly. However, the identity, strength, and diversity of pollen competitive interactions and how they vary across pollinator functional groups is not known. Evaluating patterns and drivers of the pollen co‐transport landscape and how these vary across different pollinator groups is central to further our understanding of floral evolution and co‐flowering community assembly.Here, we integrate information on the number and identity of pollen grains on individual insect pollen loads with network analyses to uncover novel pollen co‐transport networks and how these vary across pollinator functional groups (bees and bee flies). We further evaluate differences in pollen load size, species composition, diversity and phylogenetic diversity among insect groups and how these relate to body size and gender.Pollen co‐transport networks were diverse and highly modular in bees, with groups of pollen species interacting more often with each other on insect bodies. However, the number, identity and frequency of competitors that pollen grains encounter on insect bodies vary between some pollinator functional groups. Other aspects of pollen loads such as their size, richness and phylogenetical diversity were shaped by bee size or gender, with females carrying larger but less phylogenetically diverse pollen loads than males.Synthesis. Our results show that the number, identity and phylogenetic relatedness of pollen competitors changes as pollen grains travel on the body of different pollinators. As a result, pollinator groups impose vastly different interaction landscapes during pollen transport, with so far unknown consequences for plant reproductive success, floral evolution and community assembly.more » « less
-
Invasive parasites are a major threat to biodiversity worldwide, so understanding the factors that control them is necessary to improve the health of affected host species. In the Galápagos Islands, the invasive nest ectoparasite, the avian vampire fly (Philornis downsi), is causing up to 100% mortality in nestling Darwin’s finches. However, urban finch nests have fewer flies than non-urban finch nests. One explanation is that finches incorporate cigarette butts into their nests, which can decrease nest parasite abundance for other bird species. For our study, we exposed larval flies to cigarette tobacco-treated (concentrated or diluted) or untreated cotton, then characterized pupation success, pupal deformities and success, and adult fly eclosure success and size. The influence of moisture on the effect of tobacco treatment on fly health was also determined. Flies reared in the tobacco treatments as larvae had lower pupation success, larger pupal volume, and a higher prevalence of pupal deformities compared to control flies, regardless of moisture treatment. Furthermore, we found that tobacco-treated flies had lower eclosure success. In fact, very few tobacco-treated flies survived to adulthood. We also collected finch nests and quantified the prevalence and mass of cigarette butts and abundance of flies in the nests. Although most urban finch nests contain cigarette butts (73%), the mass of cigarette butts was very low and did not correlate with fly abundance. Compared to past studies, finch nests require ten times as many cigarette butts to affect fly survival. Although tobacco can negatively affect vampire flies, finches likely do not incorporate enough cigarette butts to affect fly fitness.more » « less
-
Abstract Human activity changes multiple factors in the environment, which can have positive or negative synergistic effects on organisms. However, few studies have explored the causal effects of multiple anthropogenic factors, such as urbanization and invasive species, on animals and the mechanisms that mediate these interactions. This study examines the influence of urbanization on the detrimental effect of invasive avian vampire flies (Philornis downsi) on endemic Darwin's finches in the Galápagos Islands. We experimentally manipulated nest fly abundance in urban and non‐urban locations and then characterized nestling health, fledging success, diet, and gene expression patterns related to host defense. Fledging success of non‐parasitized nestlings from urban (79%) and non‐urban (75%) nests did not differ significantly. However, parasitized, non‐urban nestlings lost more blood, and fewer nestlings survived (8%) compared to urban nestlings (50%). Stable isotopic values (δ15N) from urban nestling feces were higher than those from non‐urban nestlings, suggesting that urban nestlings are consuming more protein. δ15N values correlated negatively with parasite abundance, which suggests that diet might influence host defenses (e.g., tolerance and resistance). Parasitized, urban nestlings differentially expressed genes within pathways associated with red blood cell production (tolerance) and pro‐inflammatory response (innate immunological resistance), compared to parasitized, non‐urban nestlings. In contrast, parasitized non‐urban nestlings differentially expressed genes within pathways associated with immunoglobulin production (adaptive immunological resistance). Our results suggest that urban nestlings are investing more in pro‐inflammatory responses to resist parasites but also recovering more blood cells to tolerate blood loss. Although non‐urban nestlings are mounting an adaptive immune response, it is likely a last effort by the immune system rather than an effective defense against avian vampire flies since few nestlings survived.more » « less
An official website of the United States government

