Summary Predicting shifts in species composition with global change remains challenging, but plant functional traits provide a key link to scale from plant to community and ecosystem levels. The extent to which functional trait shifts may mediate ecosystem response to climate change remains a critical question.We ran point‐scale Community Land Model (CLM) simulations with site‐specific functional trait and phenology observations to represent alpine tundra growth strategies. We validated our results with site observations and compared parameterized results to those using the default parameterization. We then quantified the relative contribution of plant functional trait shifts vs climate change scenarios (and the resulting phenological shifts) to uncertainty in future tundra ecosystem productivity outcomes.We found that using community‐specific functional traits and phenology observations significantly improved productivity estimates compared with overestimates in a default simulation. Uncertainty in potential plant trait shifts often had a larger effect on ecosystem productivity responses than uncertainty in the forced response from different climate change scenarios.These findings highlight the key role of functional traits in shaping vegetation responses to climate change and the value of incorporating site‐level measurements into land models to more accurately forecast climate change impacts on ecosystem function.
more »
« less
Divergent community trajectories with climate change across a fine‐scale gradient in snow depth
Abstract Fine‐scale microclimate variation due to complex topography can shape both current vegetation distributional patterns and how vegetation responds to changing climate. Topographic heterogeneity in mountains is hypothesized to mediate responses to regional climate change at the scale of metres. For alpine vegetation especially, the interplay between changing temperatures and topographically mediated variation in snow accumulation will determine the overall impact of climate change on vegetation dynamics.We combined 30 years of co‐located measurements of temperature, snow and alpine plant community composition in Colorado, USA, to investigate vegetation community trajectories across a snow depth gradient.Our analysis of long‐term trends in plant community composition revealed notable directional change in the alpine vegetation with warming temperatures. Furthermore, community trajectories are divergent across the snow depth gradient, with exposed parts of the landscape that experience little snow accumulation shifting towards stress‐tolerant, cold‐ and drought‐adapted communities, while snowier areas shifted towards more warm‐adapted communities.Synthesis: Our findings demonstrate that fine‐scale topography can mediate both the magnitude and direction of vegetation responses to climate change. We documented notable shifts in plant community composition over a 30‐year period even though alpine vegetation is known for slow dynamics that often lag behind environmental change. These results suggest that the processes driving alpine plant population and community dynamics at this site are strong and highly heterogeneous across the complex topography that is characteristic of high‐elevation mountain systems.
more »
« less
- PAR ID:
- 10475493
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Journal of Ecology
- Volume:
- 112
- Issue:
- 1
- ISSN:
- 0022-0477
- Format(s):
- Medium: X Size: p. 126-137
- Size(s):
- p. 126-137
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Topography affects abiotic conditions which can influence the structure, function and dynamics of ecological communities. An increasing number of studies have demonstrated biological consequences of fine‐scale topographic heterogeneity but we have a limited understanding of how these effects depend on the climate context.We merged high‐resolution (1 m2) data on topography and canopy height derived from airborne lidar with ground‐based data from 15 forest plots in Puerto Rico distributed along a precipitation gradient spanningc. 800–3,500 mm/year. Ground‐based data included species composition, estimated above‐ground biomass (AGB), and two key functional traits (wood density and leaf mass per area, LMA) that reflect resource‐use strategies and a trade‐off between hydraulic safety and hydraulic efficiency. We used hierarchical Bayesian models to evaluate how the interaction between topography × climate is related to metrics of forest structure (i.e. canopy height and AGB), as well as taxonomic and functional alpha‐ and beta‐diversity.Fine‐scale topography (characterized with the topographic wetness index, TWI) significantly affected forest structure and the strength (and in some cases direction) of these effects varied across the precipitation gradient. In all plots, canopy height increased with topographic wetness but the effect was much stronger in dry compared to wet forest plots. In dry forest plots, topographically wetter microsites also had higher levels of AGB but in wet forest plots, topographically drier microsites had higher AGB.Fine‐scale topography influenced functional composition but had only weak or non‐significant effects on taxonomic and functional alpha‐ and beta‐diversity. For instance, community‐weighted wood density followed a similar pattern to AGB across plots. We also found a marginally significant association between variation of wood density and topographic heterogeneity that depended on climate context.Synthesis. The effects of fine‐scale topographic heterogeneity on tropical forest structure and composition depend on the climate context. Our study demonstrates how a stronger integration of topographic heterogeneity across precipitation gradients could improve estimates of forest structure and biomass, and may provide insight to the ways that topography might mediate species responses to drought and climate change.more » « less
-
High alpine ecosystems are particularly sensitive to climate-driven change, with vegetation expansion increasingly observed in historically barren soils. In late August and early September 2024, we revisited 50 previously established vegetation plots in Green Lakes Valley (Niwot Ridge LTER) to evaluate patterns of plant colonization and community change over time. Using legacy vegetation data from 2008 and 2015, we assessed changes in plant cover and composition in relation to microtopography and prior plant occurrence. We resampled plots using spatially referenced 1-meter radius surveys, estimating species incidence and cover while documenting moss, lichen, sedge, and grass diversity. These data can provide insight into how priority effects and fine-scale environmental variation influence alpine plant community dynamics and may inform predictive models of plant responses to ongoing climatic shifts.more » « less
-
Abstract In the southern Great Lakes Region, North America, between 19,000 and 8,000 years ago, temperatures rose by 2.5–6.5°C and sprucePiceaforests/woodlands were replaced by mixed‐deciduous or pinePinusforests. The demise ofPiceaforests/woodlands during the last deglaciation offers a model system for studying how changing climate and disturbance regimes interact to trigger declines of dominant species and vegetation‐type conversions.The role of rising temperatures in driving the regional demise ofPiceaforests/woodlands is widely accepted, but the role of fire is poorly understood. We studied the effect of changing fire activity onPiceadeclines and rates of vegetation composition change using fossil pollen and macroscopic charcoal from five high‐resolution lake sediment records.The decline ofPiceaforests/woodlands followed two distinct patterns. At two sites (Stotzel‐Leis and Silver Lake), fire activity reached maximum levels during the declines and both charcoal accumulation rates and fire frequency were significantly and positively associated with vegetation composition change rates. At these sites,Piceadeclined to low levels by 14 kyr BP and was largely replaced by deciduous hardwood taxa like ashFraxinus, hop‐hornbeam/hornbeamOstrya/Carpinusand elmUlmus. However, this ecosystem transition was reversible, asPiceare‐established at lower abundances during the Younger Dryas.At the other three sites, there was no statistical relationship between charcoal accumulation and vegetation composition change rates, though fire frequency was a significant predictor of rates of vegetation change at Appleman Lake and Triangle Lake Bog. At these sites,Piceadeclined gradually over several thousand years, was replaced by deciduous hardwoods and high levels ofPinusand did not re‐establish during the Younger Dryas.Synthesis. Fire does not appear to have been necessary for the climate‐driven loss ofPiceawoodlands during the last deglaciation, but increased fire frequency accelerated the decline ofPiceain some areas by clearing the way for thermophilous deciduous hardwood taxa. Hence, warming and intensified fire regimes likely interacted in the past to cause abrupt losses of coniferous forests and could again in the coming decades.more » « less
-
Summary Microalgae adapted to near‐zero temperatures and high light levels live on snowfields and glaciers worldwide. Snow algae have red‐colored pigments that darken snow surfaces, lowering its albedo and accelerating snowmelt. Despite their importance to the cryosphere, we know little about controls on snow algal productivity and biomass.Here, we characterize photophysiology from diverse natural field‐collected populations of alpine snow algae from the North Cascades of Washington, USA, where the major red‐bloom producing generaChlainomonas,Sanguina, andRosettawere present. We tested short‐term physiological responses of snow algae to light (0–3000 μmol m−2 s−1) and CO2levels (0–1600 ppm), allowing us to determine the saturating light and CO2levels for snow algal community net photosynthesis.All snow algal communities surveyed were adapted to extremely high light levels (3000 μmol m−2 s−1). In addition, photosynthesis rates of all the snow algal communities responded strongly to increasing CO2levels. At current atmospheric CO2levels (420 ppm), snow algal net photosynthesis rates were onlyc.50% saturated.Together, these results suggest the primary productivity of important bloom‐forming snow algal communities in alpine ecosystems will likely rise as atmospheric CO2concentrations increase, regardless of potential changes in available light levels.more » « less
An official website of the United States government
