skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on November 19, 2026

Title: Plant functional trait uncertainty can outweigh climate scenario uncertainty in tundra ecosystem productivity
Summary Predicting shifts in species composition with global change remains challenging, but plant functional traits provide a key link to scale from plant to community and ecosystem levels. The extent to which functional trait shifts may mediate ecosystem response to climate change remains a critical question.We ran point‐scale Community Land Model (CLM) simulations with site‐specific functional trait and phenology observations to represent alpine tundra growth strategies. We validated our results with site observations and compared parameterized results to those using the default parameterization. We then quantified the relative contribution of plant functional trait shifts vs climate change scenarios (and the resulting phenological shifts) to uncertainty in future tundra ecosystem productivity outcomes.We found that using community‐specific functional traits and phenology observations significantly improved productivity estimates compared with overestimates in a default simulation. Uncertainty in potential plant trait shifts often had a larger effect on ecosystem productivity responses than uncertainty in the forced response from different climate change scenarios.These findings highlight the key role of functional traits in shaping vegetation responses to climate change and the value of incorporating site‐level measurements into land models to more accurately forecast climate change impacts on ecosystem function.  more » « less
Award ID(s):
2120804 1926413 2224439
PAR ID:
10659430
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
New Phytologist
Volume:
249
Issue:
3
ISSN:
0028-646X
Format(s):
Medium: X Size: p. 1188-1203
Size(s):
p. 1188-1203
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Plant ecological strategies are shaped by numerous functional traits and their trade‐offs. Trait network analysis enables testing hypotheses for the shifting of trait correlation architecture across communities differing in climate and productivity.We built plant trait networks (PTNs) for 118 species within six communities across an aridity gradient, from forest to semi‐desert across the California Floristic Province, based on 34 leaf and wood functional traits, representing hydraulic and photosynthetic function, structure, economics and size. We developed hypotheses for the association of PTN parameters with climate and ecosystem properties, based on theory for the adaptation of species to low resource/stressful environments versus higher resource availability environments with greater potential niche differentiation. Thus, we hypothesized that across community PTNs, trait network connectivity (i.e., the degree that traits are intercorrelated) and network complexity (i.e., the number of trait modules, and the degree of trait integration among modules) would be lower for communities adapted to arid climates and higher for communities adapted to greater water availability, similarly to trends expected for phylogenetic diversity, functional richness and productivity. Further, within given PTNs, we hypothesized that traits would vary strongly in their network connectivity and that the traits most centrally connected within PTNs would be those with the least across‐species variation.Across communities from more arid to wetter climates, PTN architecture varied from less to more interconnected and complex, in association with functional richness, but PTN architecture was independent of phylogenetic diversity and ecosystem productivity. Within the community PTNs, traits with lower species variation were more interconnected.Synthesis. The responsiveness of PTN architecture to climate highlights how a wide range of traits contributes to physiological and ecological strategies with an architecture that varies among plant communities. Communities in more arid environments show a lower degree of phenotypic integration, consistent with lesser niche differentiation. Our study extends the usefulness of PTNs as an approach to quantify tradeoffs among multiple traits, providing connectivity and complexity parameters as tools that clarify plant environmental adaptation and patterns of trait associations that would influence species distributions, community assembly, and ecosystem resilience in response to climate change. 
    more » « less
  2. Abstract Nutrient enrichment impacts grassland plant diversity such as species richness, functional trait composition and diversity, but whether and how these changes affect ecosystem stability in the face of increasing climate extremes remains largely unknown.We quantified the direct and diversity‐mediated effects of nutrient addition (by nitrogen, phosphorus, and potassium) on the stability of above‐ground biomass production in 10 long‐term grassland experimental sites. We measured five facets of stability as the temporal invariability, resistance during and recovery after extreme dry and wet growing seasons.Leaf traits (leaf carbon, nitrogen, phosphorus, potassium, and specific leaf area) were measured under ambient and nutrient addition conditions in the field and were used to construct the leaf economic spectrum (LES). We calculated functional trait composition and diversity of LES and of single leaf traits. We quantified the contribution of intraspecific trait shifts and species replacement to change in functional trait composition as responses to nutrient addition and its implications for ecosystem stability.Nutrient addition decreased functional trait diversity and drove grassland communities to the faster end of the LES primarily through intraspecific trait shifts, suggesting that intraspecific trait shifts should be included for accurately predicting ecosystem stability. Moreover, the change in functional trait diversity of the LES in turn influenced different facets of stability. That said, these diversity‐mediated effects were overall weak and/or overwhelmed by the direct effects of nutrient addition on stability. As a result, nutrient addition did not strongly impact any of the stability facets. These results were generally consistent using individual leaf traits but the dominant pathways differed. Importantly, major influencing pathways differed using average trait values extracted from global trait databases (e.g. TRY).Synthesis. Investigating changes in multiple facets of plant diversity and their impacts on multidimensional stability under global changes such as nutrient enrichment can improve our understanding of the processes and mechanisms maintaining ecosystem stability. 
    more » « less
  3. Abstract Turnover in species composition and the dominant functional strategies in plant communities across environmental gradients is a common pattern across biomes, and is often assumed to reflect shifts in trait optima. However, the extent to which community‐wide trait turnover patterns reflect changes in how plant traits affect the vital rates that ultimately determine fitness remain unclear.We tested whether shifts in the community‐weighted means of four key functional traits across an environmental gradient in a southern California grassland reflect variation in how these traits affect species' germination and fecundity across the landscape.We asked whether models that included trait–environment interactions help explain variation in two key vital rates (germination rates and fecundity), as well as an integrative measure of fitness incorporating both vital rates (the product of germination rate and fecundity). To do so, we planted seeds of 17 annual plant species at 16 sites in cleared patches with no competitors, and quantified the lifetime seed production of 1360 individuals. We also measured community composition and a variety of abiotic variables across the same sites. This allowed us to evaluate whether observed shifts in community‐weighted mean traits matched the direction of any trait–environment interactions detected in the plant performance experiment.We found that commonly measured plant functional traits do help explain variation in species responses to the environment—for example, high‐SLA species had a demographic advantage (higher germination rates and fecundity) in sites with high soil Ca:Mg levels, while low‐SLA species had an advantage in low Ca:Mg soils. We also found that shifts in community‐weighted mean traits often reflect the direction of these trait–environment interactions, though not all trait–environment relationships at the community level reflect changes in optimal trait values across these gradients.Synthesis. Our results show how shifts in trait–fitness relationships can give rise to turnover in plant phenotypes across environmental gradients, a fundamental pattern in ecology. We highlight the value of plant functional traits in predicting species responses to environmental variation, and emphasise the need for more widespread study of trait–performance relationships to improve predictions of community responses to global change. 
    more » « less
  4. Summary Anthropogenetic climate change has caused range shifts among many species. Species distribution models (SDMs) are used to predict how species ranges may change in the future. However, most SDMs rarely consider how climate‐sensitive traits, such as phenology, which affect individuals' demography and fitness, may influence species' ranges.Using > 120 000 herbarium specimens representing 360 plant species distributed across the eastern United States, we developed a novel ‘phenology‐informed’ SDM that integrates phenological responses to changing climates. We compared the ranges of each species forecast by the phenology‐informed SDM with those from conventional SDMs. We further validated the modeling approach using hindcasting.When examining the range changes of all species, our phenology‐informed SDMs forecast less species loss and turnover under climate change than conventional SDMs. These results suggest that dynamic phenological responses of species may help them adjust their ecological niches and persist in their habitats as the climate changes.Plant phenology can modulate species' responses to climate change, mitigating its negative effects on species persistence. Further application of our framework will contribute to a generalized understanding of how traits affect species distributions along environmental gradients and facilitate the use of trait‐based SDMs across spatial and taxonomic scales. 
    more » « less
  5. Abstract Plant traits are useful proxies of plant strategies and can influence community and ecosystem responses to climate extremes, such as severe drought. Few studies, however, have investigated both the immediate and lagged effects of drought on community‐weighted mean (CWM) plant traits, with even less research on the relative roles of interspecific vs. intraspecific trait variability in such responses.We experimentally reduced growing season precipitation by 66% in two cold‐semi‐arid grassland sites in northern China for four consecutive years to explore the drought resistance of CWM traits as well as their recovery 2 years following the drought. In addition, we isolated the effects of both interspecific and intraspecific trait variability on shifts in CWM traits.At both sites, we observed significant effects of drought on interspecific and intraspecific trait variability which, in some cases, led to significant changes in CWM traits. For example, drought led to reduced CWM plant height and leaf phosphorous content, but increased leaf carbon content at both sites, with responses primarily due to intraspecific trait shifts. Surprisingly, these CWM traits recovered completely 2 years after the extreme drought. Intraspecific trait variability influenced CWM traits via both positive and negative covariation with interspecific trait variability during drought and recovery phases.These findings highlight the important role of interspecific and intraspecific trait variability in driving the response and recovery of CWM traits following extreme, prolonged drought. Read the freePlain Language Summaryfor this article on the Journal blog. 
    more » « less