Abstract Observed surface temperature trends over recent decades are characterized by (a) intensified warming in the Indo‐Pacific Warm Pool and slight cooling in the eastern equatorial Pacific, consistent with Walker circulation strengthening, and (b) Southern Ocean cooling. In contrast, state‐of‐the‐art coupled climate models generally project enhanced warming in the eastern equatorial Pacific, Walker circulation weakening, and Southern Ocean warming. Here we investigate the ability of 16 climate model large ensembles to reproduce observed sea‐surface temperature and sea‐level pressure trends over 1979–2020 through a combination of externally forced climate change and internal variability. We find large‐scale differences between observed and modeled trends that are very unlikely (<5% probability) to occur due to internal variability as represented in models. Disparate trends in the ratio of Indo‐Pacific Warm Pool to tropical‐mean warming, which shows little multi‐decadal variability in models, hint that model biases in the response to historical forcing constitute part of the discrepancy.
more »
« less
Connecting the SST Pattern Problem and the Hot Model Problem
Abstract In the equatorial and subtropical east Pacific Ocean, strong ocean‐atmosphere coupling results in large‐amplitude interannual variability. Recent literature debates whether climate models reproduce observed short and long‐term surface temperature trends in this region. We reconcile the debate by reevaluating a large range of trends in initial condition ensembles of 15 climate models. We confirm that models fail to reproduce long‐term trends, but also find that many models do not reproduce the observed decadal‐scale swings in the East to West gradient of the equatorial Pacific. Models with high climate sensitivity are less likely to reproduce observed decadal‐scale swings than models with a modest climate sensitivity, possibly due to an incorrect balance of cloud feedbacks driven by changing inversion strength versus surface warming. Our findings suggest that two not well understood problems of the current generation of climate models are connected and we highlight the need to increase understanding of decadal‐scale variability.
more »
« less
- PAR ID:
- 10475522
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Geophysical Research Letters
- Volume:
- 50
- Issue:
- 22
- ISSN:
- 0094-8276
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Near‐term projections of drought in the southwestern United States (SWUS) are uncertain. The observed decrease in SWUS precipitation since the 1980s and heightened drought conditions since the 2000s have been linked to a cooling sea surface temperature (SST) trend in the Equatorial Pacific. Notably, climate models fail to reproduce these observed SST trends, and they may continue doing so in the future. Here, we assess the sensitivity of SWUS precipitation projections to future SST trends using a Green's function approach. Our findings reveal that a slight redistribution of SST leads to a wetting or drying of the SWUS. A reversal of the observed cooling trend in the Central and East Pacific over the next few decades would lead to a period of wetting in the SWUS. It is critical to consider the impact of possible SST pattern trends on SWUS precipitation trends until we fully trust SST evolution in climate models.more » « less
-
Abstract The trends over recent decades in tropical Pacific sea surface and upper ocean temperature are examined in observations-based products, an ocean reanalysis and the latest models from the Coupled Model Intercomparison Project phase six and the Multimodel Large Ensembles Archive. Comparison is made using three metrics of sea surface temperature (SST) trend—the east–west and north–south SST gradients and a pattern correlation for the equatorial region—as well as change in thermocline depth. It is shown that the latest generation of models persist in not reproducing the observations-based SST trends as a response to radiative forcing and that the latter are at the far edge or beyond the range of modeled internal variability. The observed combination of thermocline shoaling and lack of warming in the equatorial cold tongue upwelling region is similarly at the extreme limit of modeled behavior. The persistence over the last century and a half of the observed trend toward an enhanced east–west SST gradient and, in four of five observed gridded datasets, to an enhanced equatorial north–south SST gradient, is also at the limit of model behavior. It is concluded that it is extremely unlikely that the observed trends are consistent with modeled internal variability. Instead, the results support the argument that the observed trends are a response to radiative forcing in which an enhanced east–west SST gradient and thermocline shoaling are key and that the latest generation of climate models continue to be unable to simulate this aspect of climate change.more » « less
-
null (Ed.)Abstract Using an eastern tropical Pacific pacemaker experiment called the Pacific Ocean–Global Atmosphere (POGA) run, this study investigated the internal variability in sea surface salinity (SSS) and its impacts on the assessment of long-term trends. By constraining the eastern tropical Pacific sea surface temperature variability with observations, the POGA experiment successfully simulated the observed variability of SSS. The long-term trend in POGA SSS shows a general pattern of salty regions becoming saltier (e.g., the northern Atlantic) and fresh regions becoming fresher, which agrees with previous studies. The 1950–2012 long-term trend in SSS is modulated by the internal variability associated with the interdecadal Pacific oscillation (IPO). Due to this variability, there are some regional discrepancies in the SSS 1950–2012 long-term change between POGA and the free-running simulation forced with historical radiative forcing, especially for the western tropical Pacific and southeastern Indian Ocean. Our analysis shows that the tropical Pacific cooling and intensified Walker circulation caused the SSS to increase in the western tropical Pacific and decrease in the southeastern Indian Ocean during the 20-yr period of 1993–2012. This decadal variability has led to large uncertainties in the estimation of radiative-forced trends on a regional scale. For the 63-yr period of 1950–2012, the IPO caused an offset of ~40% in the radiative-forced SSS trend in the western tropical Pacific and ~170% enhancement in the trend in the southeastern Indian Ocean. Understanding and quantifying the contribution of internal variability to SSS trends helps improve the skill for estimates and prediction of salinity/water cycle changes.more » « less
-
Abstract Changes in the amplitude of decadal climate variability over the twentieth century have been noted, with most evidence derived from tropical Pacific sea surface temperature records. However, the length, spatial coverage, and stability of most instrumental records are insufficient to robustly identify such nonstationarity, or resolve its global spatial structure. Here, it is found that the long-term, stable, observing platform provided by tide gauges reveals a dramatic increase in the amplitude and spatial coherence of decadal (11–14-yr period) coastal sea level ( ζ ) variability between 1960 and 2000. During this epoch, western North American ζ was approximately out of phase with ζ in Sydney, Australia, and led northeastern U.S. ζ by approximately 1–2 years. The amplitude and timing of changes in decadal ζ variability in these regions are consistent with changes in atmospheric variability. Specifically, central equatorial Pacific wind stress and Labrador Sea heat flux are highly coherent and exhibit contemporaneous, order-of-magnitude increases in decadal power. These statistical relationships have a mechanistic underpinning: Along the western North American coastline, equatorial winds are known to drive rapidly propagating ζ signals along equatorial and coastal waveguides, while a 1–2-yr lag between Labrador Sea heat fluxes and northeastern United States ζ is consistent with a remotely forced, buoyancy-driven, mechanism. Tide gauges thus provide strong independent support for an increase in interbasin coherence on decadal time scales over the second half of the twentieth century, with implications for both the interpretation and prediction of climate and sea level variability. Significance Statement Decadal climate variability influences the frequency and severity of many natural hazards (e.g., drought), with considerable human and ecological impacts. Understanding observed changes and predicting future impacts relies upon an understanding of the physical processes and any changes in their variability and relationship over time. However, identifying such changes requires very long observational records. This paper leverages a large set of tide gauge records to show that decadal time scale coastal sea level variability increased dramatically in the second half of the twentieth century, in widely separated geographic locations. The increase was driven by a shift in the amplitude, spatial pattern, and interbasin coherence of atmospheric pressure, wind, and sea surface temperature variability.more » « less
An official website of the United States government
