skip to main content


Search for: All records

Award ID contains: 2219829

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    In the equatorial and subtropical east Pacific Ocean, strong ocean‐atmosphere coupling results in large‐amplitude interannual variability. Recent literature debates whether climate models reproduce observed short and long‐term surface temperature trends in this region. We reconcile the debate by reevaluating a large range of trends in initial condition ensembles of 15 climate models. We confirm that models fail to reproduce long‐term trends, but also find that many models do not reproduce the observed decadal‐scale swings in the East to West gradient of the equatorial Pacific. Models with high climate sensitivity are less likely to reproduce observed decadal‐scale swings than models with a modest climate sensitivity, possibly due to an incorrect balance of cloud feedbacks driven by changing inversion strength versus surface warming. Our findings suggest that two not well understood problems of the current generation of climate models are connected and we highlight the need to increase understanding of decadal‐scale variability.

     
    more » « less
  2. Abstract

    Five out of six La Niña events since 1998 have lasted two to three years. Why so many long-lasting multiyear La Niña events have emerged recently and whether they will become more common remains unknown. Here we show that ten multiyear La Niña events over the past century had an accelerated trend, with eight of these occurring after 1970. The two types of multiyear La Niña events over this time period followed either a super El Niño or a central Pacific El Niño. We find that multiyear La Niña events differ from single-year La Niñas by a prominent onset rate, which is rooted in the western Pacific warming-enhanced zonal advective feedback for the central Pacific multiyear La Niña events type and thermocline feedback for the super El Niño multiyear La Niña events type. The results from large ensemble climate simulations support the observed multiyear La Niña events–western Pacific warming link. More multiyear La Niña events will exacerbate adverse socioeconomic impacts if the western Pacific continues to warm relative to the central Pacific.

     
    more » « less
  3. Abstract

    The El Niño‐Southern Oscillation (ENSO) in the equatorial Pacific is the dominant mode of global air‐sea carbon dioxide (CO2) flux interannual variability (IAV). Air‐sea CO2fluxes are driven by the difference between atmospheric and surface ocean pCO2, with variability of the latter driving flux variability. Previous studies found that models in Coupled Model Intercomparison Project Phase 5 (CMIP5) failed to reproduce the observed ENSO‐related pattern of CO2fluxes and had weak pCO2IAV, which were explained by both weak upwelling IAV and weak mean vertical dissolved inorganic carbon (DIC) gradients. We assess whether the latest generation of CMIP6 models can reproduce equatorial Pacific pCO2IAV by validating models against observations‐based data products. We decompose pCO2IAV into thermally and non‐thermally driven anomalies to examine the balance between these competing anomalies, which explain the total pCO2IAV. The majority of CMIP6 models underestimate pCO2IAV, while they overestimate sea surface temperature IAV. Insufficient compensation of non‐thermal pCO2to thermal pCO2IAV in models results in weak total pCO2IAV. We compare the relative strengths of the vertical transport of temperature and DIC and evaluate their contributions to thermal and non‐thermal pCO2anomalies. Model‐to‐observations‐based product comparisons reveal that modeled mean vertical DIC gradients are biased weak relative to their mean vertical temperature gradients, but upwelling acting on these gradients is insufficient to explain the relative magnitudes of thermal and non‐thermal pCO2anomalies.

     
    more » « less
  4. The El Niño–Southern Oscillation (ENSO) provides most of the global seasonal climate forecast skill, yet, quantifying the sources of skilful predictions is a long-standing challenge. Different sources of predictability affect ENSO evolution, leading to distinct global effects. Artificial intelligence forecasts offer promising advancements but linking their skill to specific physical processes is not yet possible, limiting our understanding of the dynamics underpinning the advancements. Here we show that an extended nonlinear recharge oscillator (XRO) model shows skilful ENSO forecasts at lead times up to 16–18 months, better than global climate models and comparable to the most skilful artificial intelligence forecasts. The XRO parsimoniously incorporates the core ENSO dynamics and ENSO’s seasonally modulated interactions with other modes of variability in the global oceans. The intrinsic enhancement of ENSO’s long-range forecast skill is traceable to the initial conditions of other climate modes by means of their memory and interactions with ENSO and is quantifiable in terms of these modes’ contributions to ENSO amplitude. Reforecasts using the XRO trained on climate model output show that reduced biases in both model ENSO dynamics and in climate mode interactions can lead to more skilful ENSO forecasts. The XRO framework’s holistic treatment of ENSO’s global multi-timescale interactions highlights promising targets for improving ENSO simulations and forecasts. 
    more » « less
    Free, publicly-accessible full text available June 27, 2025
  5. Most current climate models predict that the equatorial Pacific will evolve under greenhouse gas–induced warming to a more El Niño-like state over the next several decades, with a reduced zonal sea surface temperature gradient and weakened atmospheric Walker circulation. Yet, observations over the last 50 y show the opposite trend, toward a more La Niña-like state. Recent research provides evidence that the discrepancy cannot be dismissed as due to internal variability but rather that the models are incorrectly simulating the equatorial Pacific response to greenhouse gas warming. This implies that projections of regional tropical cyclone activity may be incorrect as well, perhaps even in the direction of change, in ways that can be understood by analogy to historical El Niño and La Niña events: North Pacific tropical cyclone projections will be too active, North Atlantic ones not active enough, for example. Other perils, including severe convective storms and droughts, will also be projected erroneously. While it can be argued that these errors are transient, such that the models’ responses to greenhouse gases may be correct in equilibrium, the transient response is relevant for climate adaptation in the next several decades. Given the urgency of understanding regional patterns of climate risk in the near term, it would be desirable to develop projections that represent a broader range of possible future tropical Pacific warming scenarios—including some in which recent historical trends continue—even if such projections cannot currently be produced using existing coupled earth system models. 
    more » « less