skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Ultraporous superactivated hydrochars from food waste: comparing environmental impacts of char impregnation versus direct chemical activation method
The monumental challenge associated with food waste management has emphasized the dire need of upcycling it into useful materials, including ultraporous adsorbent. Among various technologies of maximizing porosity of such waste-derived porous sorbents, potassium hydroxide (KOH) activation of food waste hydrochar has emerged to be a prominent one. There are two different ways to synthesize ultraporous adsorbent, namely, direct chemical activation (DCA) and char impregnation (CI). This study aims in investigating the environmental impact comparison of DCA and CI using life cycle assessment (LCA). The results demonstrate that CI processes in an environmentally sound way for synthesizing ultraporous carbons from food waste, where freshwater ecotoxicity (57.2%) plays the major contributing role in environmental impact category, primarily due to acid neutralization in the mixer unit of the CI technique of activation. In addition, the dryer unit in the CI process, which is powered by natural gas combustion, was responsible for climate change impact category. Therefore, as an alternative, employment of renewable solar energy (from solar thermal power plant) was also investigated, and results highlighted the possibility of achieving reduced climate change and acidification potential.  more » « less
Award ID(s):
2123495
PAR ID:
10475647
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Springer
Date Published:
Journal Name:
Biomass Conversion and Biorefinery
ISSN:
2190-6815
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this study, an eco-friendly and novel hydrogel based on a crosslinked polyvinyl alcohol (PVA), iota carrageenan (IC) and polyvinylpyrrolidone (PVP) scaffold, containing a large amount (10–50 wt%) of nanoscale palm fronds (NPF) as additives, for water purification was demonstrated. A life cycle assessment (LCA) findings on NPF as biomass waste incorporated into PVA_PVP_IC polymer matrix was presented, and the results highlight the necessity of focused actions to reduce environmental impact and support the palm waste utilization in a sustainable manner. The multicomponent nanocomposite hydrogels were examined as adsorbents in a system work in batches for methylene blue (MB) and paracetamol (PCT) removal. The results show that, the presence of NPF, which dispersed in the hydrogel PVA_PVP_IC scaffolds containing both covalent and non-covalent cross-linking bonds, greatly enhanced the MB and PCT adsorption efficiency. A response surface methodology (RSM) model was used to find the best operating parameters of contaminant adsorption, including time, adsorbent dose, and starting concentration of pollutants. By using this statistical model, it was found that the optimal conditions for the adsorption reaction to achieve the complete removal of MB are 66.7 h adsorption time duration, 98.5 mg/L starting concentration, and an adsorbent dose of 5.9 mg, while for the complete removal of PCT, it is 57.6 h adsorption time duration, 80 mg/L starting concentration, and an adsorbent dose of 6 mg. The reusability of the nanocomposite hydrogels were tested for 5 cycles, all showed high adsorption capacity, indicating the potential for practical application of this nanocomposite hydrogel system. This study indicates that the prepared nanocomposite hydrogel raises the standard used for treatment of wastewater and also gives a solution to protect the environment and mitigate global warming. 
    more » « less
  2. Abstract Waste from the human food system includes a large quantity of nutrients that pose environmental and human health risks. If these nutrients can be captured and repurposed, they could potentially offset synthetic fertilizer demands. This study reviews several technologies—including anaerobic digestion, hydrothermal carbonization (HTC), and composting—that can be used to process wastes from the human food system. This study also assesses the quantity of nutrient resources that are available from wastes, including food waste, biosolids, manure, and yard waste. Three geographic scales were analyzed. At a national level in the United States, up to 27% of nitrogen and 33% of phosphorus demands for agriculture could be met with wastes from the human food system, primarily from food waste and biosolids. Some rural localities have a greater potential for circular economies of nutrients in the food system, with the potential to meet 100% of nitrogen and phosphorus fertilizer demands using waste nutrients, as in the case of Athens County, Ohio. Benefits of offsetting synthetic fertilizer use with waste nutrients include reduced greenhouse gas (GHG) emissions, with up to 64% reduction in GHG emissions per unit of nitrogen fertilizer produced with HTC. 
    more » « less
  3. Large-scale solar promises a low-carbon energy alternative. However, solar production in North America given anticipated climate change has been studied only seasonally in terms of solar irradiance. This work integrates more of the predictive potential of climate-change models by exploring other environmental variables, such as humidity and temperature. Here, a Continental US (CONUS) model is produced by deep learning using 2593 NREL simulated solar power stations. Daily forecasts using 17 Global Climate Models (GCM’s) through 2099 are summarized monthly. Results suggest power production factors change between +4 % and 􀀀 19 % over 93 years. These results suggest more, but still modest, potential declines than previous solar irradiance-based studies. The modest impact is encouraging. For some areas, climate model variability unfortunately yielded statistically insignificant trends and practical application is less clear. For future evaluations, this work suggests the potential importance of additional variables, monthly interval summary, and accounting for model variability. 
    more » « less
  4. ABSTRACT Globally, by 2030, it is estimated that about 2 billion tons of food waste will be generated. This will not only cause economic losses but will also lead to serious environmental issues such as the emission of greenhouse gases (GHGs), bad odor, and land pollution due to the decomposition of food waste in an open environment and landfills. It is imperative to develop novel solutions to reduce food waste and perhaps valorize it into a valuable product, thereby reducing its environmental and economic impacts. Food waste can be considered a renewable and sustainable feedstock that can be used for chemical and biological processing for its valorization. In this investigation, hydrochar is derived from the hydrothermal carbonization (HTC) of food waste and subjected to chemical activation with potassium hydroxide (KOH), followed by thermal treatment at 800°C to produce porous carbon (POC). As‐prepared POC is thoroughly characterized by Brunauer–Emmett–Teller (BET) surface area analyzer, Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy, scanning electron microscopy with energy‐dispersive X‐ray spectroscopy (SEM/EDX), and transmission electron microscopy (TEM). A specific capacitance of 112 F/g at 0.5 A/g current density is observed for POC in the three‐cell standard electrochemical setup while asymmetric supercapacitor (ASC) fabricated with POC and Cu‐ferrite electrodes exhibited energy and power densities of 29 Wh/kg and 1.36 kW/kg, respectively. Preliminary cost analysis shows a significantly lower cost for the POC derived from food waste than for a few other biomass feedstocks. 
    more » « less
  5. As electronic waste (e-waste) becomes one of the fastest growing environmental concerns, remanufacturing is considered as a promising solution. However, the profitability of take back systems is hampered by several factors including the lack of information on the quantity and timing of to-be-returned used products to a remanufacturing facility. Product design features, consumers’ awareness of recycling opportunities, socio-demographic information, peer pressure, and the tendency of customer to keep used items in storage are among contributing factors in increasing uncertainties in the waste stream. Predicting customer choice decisions on returning back used products, including both the time in which the customer will stop using the product and the end-of-use decisions (e.g. storage, resell, through away, and return to the waste stream) could help manufacturers have a better estimation of the return trend. The objective of this paper is to develop an Agent Based Simulation (ABS) model integrated with Discrete Choice Analysis (DCA) technique to predict consumer decisions on the End-of-Use (EOU) products. The proposed simulation tool aims at investigating the impact of design features, interaction among individual consumers and socio-demographic characteristics of end users on the number of returns. A numerical example of cellphone take-back system has been provided to show the application of the model. 
    more » « less