skip to main content


Title: CARAT KOP: Towards Protecting the Core HPC Kernel from Linux Kernel Modules
Award ID(s):
1763743 2119069 2211508
PAR ID:
10475683
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
ACM
Date Published:
Journal Name:
Proceedings of the 13th International Workshop on Runtime and Operating Systems for Supercomputers (ROSS 2023)
ISBN:
9798400707858
Page Range / eLocation ID:
1596 to 1605
Format(s):
Medium: X
Location:
Denver CO USA
Sponsoring Org:
National Science Foundation
More Like this
  1. Kernel matrices, as well as weighted graphs represented by them, are ubiquitous objects in machine learning, statistics and other related fields. The main drawback of using kernel methods (learning and inference using kernel matrices) is efficiency – given n input points, most kernel-based algorithms need to materialize the full n × n kernel matrix before performing any subsequent computation, thus incurring Ω(n^2) runtime. Breaking this quadratic barrier for various problems has therefore, been a subject of extensive research efforts. We break the quadratic barrier and obtain subquadratic time algorithms for several fundamental linear-algebraic and graph processing primitives, including approximating the top eigenvalue and eigenvector, spectral sparsification, solving lin- ear systems, local clustering, low-rank approximation, arboricity estimation and counting weighted triangles. We build on the recently developed Kernel Density Estimation framework, which (after preprocessing in time subquadratic in n) can return estimates of row/column sums of the kernel matrix. In particular, we de- velop efficient reductions from weighted vertex and weighted edge sampling on kernel graphs, simulating random walks on kernel graphs, and importance sampling on matrices to Kernel Density Estimation and show that we can generate samples from these distributions in sublinear (in the support of the distribution) time. Our reductions are the central ingredient in each of our applications and we believe they may be of independent interest. We empirically demonstrate the efficacy of our algorithms on low-rank approximation (LRA) and spectral sparsi- fication, where we observe a 9x decrease in the number of kernel evaluations over baselines for LRA and a 41x reduction in the graph size for spectral sparsification. 
    more » « less