skip to main content


This content will become publicly available on August 15, 2024

Title: Polyvinylidene Fluoride-Based Gel Polymer Electrolytes for Calcium Ion Conduction: A Study of the Influence of Salt Concentration and Drying Temperature on Coordination Environment and Ionic Conductivity
Calcium-ion batteries emerged as a potential sustainable alternative energy storage system; however, there remains the need to further develop electrolytes to improve their performance. We report a gel polymer electrolyte (GPE)-based on polyvinylidene fluoride (PVDF) for calcium ion conduction. The gel electrolyte was synthesized by combining a PVDF polymer host, Ca(TFSI)2 salt, and N-methyl-2-pyrrolidone (NMP) solvent. Using Fourier transform infrared spectroscopy, we analyze the effect of salt concentration and drying temperature on the degree of salt dissociation in the electrolyte. Our results show that the concentration of free cations in the electrolyte is primarily coordinated with NMP as well as PVDF, generating a suitable network for ion transport, i.e., a liquid electrolyte encompassed within a polymer matrix. We find that processing conditions such as drying temperature, which varies solvent content, play a critical role in developing polymer electrolytes that demonstrate optimal electrochemical performance. The GPEs are semicrystalline and stable up to 120 °C, which is critical for their use in applications such as in electric vehicles and renewable energy storage systems. The ionic conductivity of the GPEs exhibit Arrhenius-type behavior, and the total ionic conductivity at room temperature is suitable for applications, with values of 0.85 × 10–4 S/cm for 0.5 M and 3.56 × 10–4 S/cm for 1.0 M concentrations. The results indicate that the GPE exhibits high conductivity and good stability, making it a promising candidate for use in high-performance calcium ion batteries.  more » « less
Award ID(s):
1712733
NSF-PAR ID:
10475774
Author(s) / Creator(s):
; ;
Publisher / Repository:
American Chemical Society
Date Published:
Journal Name:
Journal of physical chemistry C
Volume:
127
ISSN:
1932-7455
Page Range / eLocation ID:
16579-16587
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    A critical barrier to overcome in the development of solid‐state electrolytes for lithium batteries is the trade‐off between sacrificing ionic conductivity for enhancement of mechanical stiffness. Here, a physically cross‐linked, polymer‐supported gel electrolyte consisting of a lithium salt/ionic liquid solution featuring a fully zwitterionic (ZI) copolymer network is introduced for rechargeable lithium‐based batteries. The ZI scaffold is synthesized using a 3:1 molar ratio of 2‐methacryloyloxyethyl phosphorylcholine and sulfobetaine vinylimidazole, and the total polymer content is varied between 1.1 and 12.5 wt%. Room‐temperature ionic conductivity values comparable to the base liquid electrolyte (≈1 mS cm−1) are achieved in ZI copolymer‐supported gels that display compressive elastic moduli as large as 14.3 MPa due to ZI dipole–dipole cross‐links. Spectroscopic characterization suggests a change in the Li+coordination shell upon addition of the zwitterions, indicative of strong Li+···ZI group interactions. Li+transference number measurements reveal an increase in Li+conductivity within a ZI gel electrolyte (nearly doubles). ZI gels display enhanced stability against Li metal, dendrite suppression, and suitable charge–discharge performance in a graphite|lithium nickel cobalt manganese oxide cell. Fully ZI polymer networks in nonvolatile, ionic liquid‐based electrolytes represent a promising approach toward realizing highly conductive, mechanically rigid gels for lithium battery technologies.

     
    more » « less
  2. Abstract

    A major challenge in the pursuit of higher‐energy‐density lithium batteries for carbon‐neutral‐mobility is electrolyte compatibility with a lithium metal electrode. This study demonstrates the robust and stable nature of acloso‐borate based gel polymer electrolyte (GPE), which enables outstanding electrochemical stability and capacity retention upon extensive cycling. The GPE developed herein has an ionic conductivity of 7.3 × 10−4 S cm−2at room temperature and stability over a wide temperature range from −35 to 80 °C with a high lithium transference number ( = 0.51). Multinuclear nuclear magnetic resonance and Fourier transform infrared are used to understand the solvation environment and interaction between the GPE components. Density functional theory calculations are leveraged to gain additional insight into the coordination environment and support spectroscopic interpretations. The GPE is also established to be a suitable electrolyte for extended cycling with four different active electrode materials when paired with a lithium metal electrode. The GPE can also be incorporated into a flexible battery that is capable of being cut and still functional. The incorporation of acloso‐borate into a gel polymer matrix represents a new direction for enhancing the electrochemical and physical properties of this class of materials.

     
    more » « less
  3. Vincent Dusastre (Ed.)
    Alternative solid-electrolytes are the next key step in advancing lithium batteries with better thermal and chemical stability. A soft-solid electrolyte (Adpn)2LiPF6 (Adpn = adiponitrile) is synthesized and characterized, which exhibits high thermal and electrochemical stability and good ionic conductivity, overcoming several limitations of conventional organic and ceramic materials. The surface of the electrolyte possesses a liquid nano-layer of Adpn that links grains for a facile ionic conduction without high pressure/temperature treatments. Further, the material can quickly self-heal if fractured and provides liquid-like conduction paths via the grain boundaries. A significantly high ion conductivity (~ 10-4 S/cm) and lithium-ion transference number (0.54) are obtained due to weak interactions between “hard” (charge-dense) Li+ ions and “soft” (electronically polarizable) -C≡N group of Adpn. Molecular simulations predict that Li+ ions migrate at the co-crystal grain boundaries with a (preferentially) lower Ea and within the interstitial regions between the co-crystals with higher Ea, where the bulk conductivity comprises a smaller but extant contribution. These cocrystals establish a special concept of crystal design to increase the thermal stability of LiPF6 by separating ions in Adpn solvent matrix, and also exhibit a unique mechanism of ion-conduction via low-resistance grain-boundaries, which is contrasting to ceramics or gel-electrolytes. 
    more » « less
  4. Abstract

    Potassium‐ion batteries (KIBs) are considered as the potential energy storage devices due to the abundant reserves and low cost of potassium. In the past decade, research on KIBs has generally focused on electrode materials. However, since electrolytes also play a key role in determining the cell performance, this review summarizes recent advances in KIB electrolytes and design strategies. Specifically, the review includes five parts. First, the organic liquid electrolyte is the most widely used type for KIBs. Its two major components, salts and solvents, have a huge impact on the formation of the solid electrolyte interphase and the performance of KIBs. Changes in salts/solvents, the introduction of additives, and the concentration increase all have a positive effect on organic liquid electrolytes. Second, the design of water‐in‐salt electrolytes can effectively widen the narrow electrochemical stability window of aqueous electrolytes. Third, despite the appealing properties, the ionic liquid electrolytes have not been widely applied due to its high cost. Fourth, the solid‐state electrolytes have drawn much attention due to high safety, and current research has been working on improving their ionic conductivity at room temperature. Lastly, perspectives are provided to support the future development of suitable electrolytes for high‐performance KIBs.

     
    more » « less
  5. Abstract

    The emergence of wearable electronics puts batteries closer to the human skin, exacerbating the need for battery materials that are robust, highly ionically conductive, and stretchable. Herein, we introduce a supramolecular design as an effective strategy to overcome the canonical tradeoff between mechanical robustness and ionic conductivity in polymer electrolytes. The supramolecular lithium ion conductor utilizes orthogonally functional H-bonding domains and ion-conducting domains to create a polymer electrolyte with unprecedented toughness (29.3 MJ m−3) and high ionic conductivity (1.2 × 10−4S cm−1at 25 °C). Implementation of the supramolecular ion conductor as a binder material allows for the creation of stretchable lithium-ion battery electrodes with strain capability of over 900% via a conventional slurry process. The supramolecular nature of these battery components enables intimate bonding at the electrode-electrolyte interface. Combination of these stretchable components leads to a stretchable battery with a capacity of 1.1 mAh cm−2that functions even when stretched to 70% strain. The method reported here of decoupling ionic conductivity from mechanical properties opens a promising route to create high-toughness ion transport materials for energy storage applications.

     
    more » « less