Managed programming languages including Java and Scala are very popular for data analytics and mobile applications. However, they often face challenging issues due to the overhead caused by the automatic memory management to detect and reclaim free available memory. It has been observed that during their Garbage Collection (GC), excessively long pauses can account for up to 40 % of the total execution time. Therefore, mitigating the GC overhead has been an active research topic to satisfy today's application requirements. This paper proposes a new technique called SwapVA to improve data copying in the copying/moving phases of GCs and reduce the GC pause time, thereby mitigating the issue of GC overhead. Our contribution is twofold. First, a SwapVA system call is introduced as a zero-copy technique to accelerate the GC copying/moving phase. Second, for the demonstration of its effectiveness, we have integrated SwapVA into SVAGC as an implementation of scalable Full GC on multi-core systems. Based on our results, the proposed solutions can dramatically reduce the GC pause in applications with large objects by as much as 70.9% and 97%, respectively, in the Sparse.large/4 (one quarter of the default input size) and Sigverify benchmarks.
more »
« less
Data-Copying in Generative Models: A Formal Framework
There has been some recent interest in detecting and addressing memorization of training data by deep neural networks. A formal framework for memorization in generative models, called “data-copying” was proposed by Meehan et. al (2020). We build upon their work to show that their framework may fail to detect certain kinds of blatant memorization. Motivated by this and the theory of non-parametric methods, we provide an alternative definition of data-copying that applies more locally. We provide a method to detect data-copying, and provably show that it works with high probability when enough data is available. We also provide lower bounds that characterize the sample requirement for reliable detection.
more »
« less
- Award ID(s):
- 1804829
- PAR ID:
- 10475787
- Publisher / Repository:
- Journal of Machine Learning Research
- Date Published:
- Journal Name:
- Proceedings of Machine Learning Research
- ISSN:
- 2640-3498
- Format(s):
- Medium: X
- Location:
- Hawaii
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Today, creators of data-hungry deep neural networks (DNNs) scour the Internet for training fodder, leaving users with little control over or knowledge of when their data, and in particular their images, are used to train models. To empower users to counteract unwanted use of their images, we design, implement and evaluate a practical system that enables users to detect if their data was used to train a DNN model for image classification. We show how users can create special images we call isotopes, which introduce ``spurious features'' into DNNs during training. With only query access to a model and no knowledge of the model-training process, nor control of the data labels, a user can apply statistical hypothesis testing to detect if the model learned these spurious features by training on the user's images. Isotopes can be viewed as an application of a particular type of data poisoning. In contrast to backdoors and other poisoning attacks, our purpose is not to cause misclassification but rather to create tell-tale changes in confidence scores output by the model that reveal the presence of isotopes in the training data. Isotopes thus turn DNNs' vulnerability to memorization and spurious correlations into a tool for data provenance. Our results confirm efficacy in multiple image classification settings, detecting and distinguishing between hundreds of isotopes with high accuracy. We further show that our system works on public ML-as-a-service platforms and larger models such as ImageNet, can use physical objects in images instead of digital marks, and remains robust against several adaptive countermeasures.more » « less
-
Memorization is an essential functionality that enables today's machine learning algorithms to provide a high quality of learning and reasoning for each prediction. Memorization gives algorithms prior knowledge to keep the context and define confidence for their decision. Unfortunately, the existing deep learning algorithms have a weak and nontransparent notion of memorization. Brain-inspired HyperDimensional Computing (HDC) is introduced as a model of human memory. Therefore, it mimics several important functionalities of the brain memory by operating with a vector that is computationally tractable and mathematically rigorous in describing human cognition. In this manuscript, we introduce a brain-inspired system that represents HDC memorization capability over a graph of relations. We propose GrapHD , hyperdimensional memorization that represents graph-based information in high-dimensional space. GrapHD defines an encoding method representing complex graph structure while supporting both weighted and unweighted graphs. Our encoder spreads the information of all nodes and edges across into a full holistic representation so that no component is more responsible for storing any piece of information than another. Then, GrapHD defines several important cognitive functionalities over the encoded memory graph. These operations include memory reconstruction, information retrieval, graph matching, and shortest path. Our extensive evaluation shows that GrapHD : (1) significantly enhances learning capability by giving the notion of short/long term memorization to learning algorithms, (2) enables cognitive computing and reasoning over memorization graph, and (3) enables holographic brain-like computation with substantial robustness to noise and failure.more » « less
-
A backdoor data poisoning attack is an adversarial attack wherein the attacker injects several watermarked, mislabeled training examples into a training set. The watermark does not impact the test-time performance of the model on typical data; however, the model reliably errs on watermarked examples. To gain a better foundational understanding of backdoor data poisoning attacks, we present a formal theoretical framework within which one can discuss backdoor data poisoning attacks for classification problems. We then use this to analyze important statistical and computational issues surrounding these attacks. On the statistical front, we identify a parameter we call the memorization capacity that captures the intrinsic vulnerability of a learning problem to a backdoor attack. This allows us to argue about the robustness of several natural learning problems to backdoor attacks. Our results favoring the attacker involve presenting explicit constructions of backdoor attacks, and our robustness results show that some natural problem settings cannot yield successful backdoor attacks. From a computational standpoint, we show that under certain assumptions, adversarial training can detect the presence of backdoors in a training set. We then show that under similar assumptions, two closely related problems we call backdoor filtering and robust generalization are nearly equivalent. This implies that it is both asymptotically necessary and sufficient to design algorithms that can identify watermarked examples in the training set in order to obtain a learning algorithm that both generalizes well to unseen data and is robust to backdoors.more » « less
-
Storing tabular data to balance storage and query efficiency is a long-standing research question in the database community. In this work, we argue and show that a novel DeepMapping abstraction, which relies on the impressive memorization capabilities of deep neural networks, can provide better storage cost, better latency, and better run-time memory footprint, all at the same time. Such unique properties may benefit a broad class of use cases in capacity-limited devices. Our proposed DeepMapping abstraction transforms a dataset into multiple key-value mappings and constructs a multi-tasking neural network model that outputs the corresponding values for a given input key. To deal with memorization errors, DeepMapping couples the learned neural network with a lightweight auxiliary data structure capable of correcting mistakes. The auxiliary structure design further enables DeepMapping to efficiently deal with insertions, deletions, and updates even without retraining the mapping. We propose a multi-task search strategy for selecting the hybrid DeepMapping structures (including model architecture and auxiliary structure) with a desirable trade-off among memorization capacity, size, and efficiency. Extensive experiments with a real-world dataset, synthetic and benchmark datasets, including TPC-H and TPC-DS, demonstrated that the DeepMapping approach can better balance the retrieving speed and compression ratio against several cutting-edge competitors.more » « less
An official website of the United States government

