skip to main content


Search for: All records

Award ID contains: 1804829

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. There has been some recent interest in detecting and addressing memorization of training data by deep neural networks. A formal framework for memorization in generative models, called “data-copying” was proposed by Meehan et. al (2020). We build upon their work to show that their framework may fail to detect certain kinds of blatant memorization. Motivated by this and the theory of non-parametric methods, we provide an alternative definition of data-copying that applies more locally. We provide a method to detect data-copying, and provably show that it works with high probability when enough data is available. We also provide lower bounds that characterize the sample requirement for reliable detection. 
    more » « less
    Free, publicly-accessible full text available July 25, 2024
  2. Developing simple, sample-efficient learning algorithms for robust classification is a pressing issue in today's tech-dominated world, and current theoretical techniques requiring exponential sample complexity and complicated improper learning rules fall far from answering the need. In this work we study the fundamental paradigm of (robust) empirical risk minimization (RERM), a simple process in which the learner outputs any hypothesis minimizing its training error. RERM famously fails to robustly learn VC classes (Montasser et al., 2019a), a bound we show extends even to `nice' settings such as (bounded) halfspaces. As such, we study a recent relaxation of the robust model called tolerant robust learning (Ashtiani et al., 2022) where the output classifier is compared to the best achievable error over slightly larger perturbation sets. We show that under geometric niceness conditions, a natural tolerant variant of RERM is indeed sufficient for γ-tolerant robust learning VC classes over ℝd, and requires only Õ (VC(H)dlogDγδϵ2) samples for robustness regions of (maximum) diameter D. 
    more » « less
  3. Large pre-trained generative models are known to occasionally output undesirable samples, which undermines their trustworthiness. The common way to mitigate this is to re-train them differently from scratch using different data or different regularization -- which uses a lot of computational resources and does not always fully address the problem. In this work, we take a different, more compute-friendly approach and investigate how to post-edit a model after training so that it ''redacts'', or refrains from outputting certain kinds of samples. We show that redaction is a fundamentally different task from data deletion, and data deletion may not always lead to redaction. We then consider Generative Adversarial Networks (GANs), and provide three different algorithms for data redaction that differ on how the samples to be redacted are described. Extensive evaluations on real-world image datasets show that our algorithms out-perform data deletion baselines, and are capable of redacting data while retaining high generation quality at a fraction of the cost of full re-training. 
    more » « less
  4. null (Ed.)
    We consider the sample complexity of learning with adversarial robustness. Most prior theoretical results for this problem have considered a setting where different classes in the data are close together or overlapping. We consider, in contrast, the well-separated case where there exists a classifier with perfect accuracy and robustness, and show that the sample complexity narrates an entirely different story. Specifically, for linear classifiers, we show a large class of well-separated distributions where the expected robust loss of any algorithm is at least Ω(𝑑𝑛), whereas the max margin algorithm has expected standard loss 𝑂(1𝑛). This shows a gap in the standard and robust losses that cannot be obtained via prior techniques. Additionally, we present an algorithm that, given an instance where the robustness radius is much smaller than the gap between the classes, gives a solution with expected robust loss is 𝑂(1𝑛). This shows that for very well-separated data, convergence rates of 𝑂(1𝑛) are achievable, which is not the case otherwise. Our results apply to robustness measured in any ℓ𝑝 norm with 𝑝>1 (including 𝑝=∞). 
    more » « less
  5. null (Ed.)
    Recent research has recognized interpretability and robustness as essential properties of trustworthy classification. Curiously, a connection between robustness and interpretability was empirically observed, but the theoretical reasoning behind it remained elusive. In this paper, we rigorously investigate this connection. Specifically, we focus on interpretation using decision trees and robustness to l1-perturbation. Previous works defined the notion of r-separation as a sufficient condition for robustness. We prove upper and lower bounds on the tree size in case the data is r-separated. We then show that a tighter bound on the size is possible when the data is linearly separated. We provide the first algorithm with provable guarantees both on robustness, interpretability, and accuracy in the context of decision trees. Experiments confirm that our algorithm yields classifiers that are both interpretable and robust and have high accuracy. 
    more » « less
  6. Learning classifiers that are robust to adversarial examples has received a great deal of recent attention. A major drawback of the standard robust learning framework is there is an artificial robustness radius r that applies to all inputs. This ignores the fact that data may be highly heterogeneous, in which case it is plausible that robustness regions should be larger in some regions of data, and smaller in others. In this paper, we address this limitation by proposing a new limit classifier, called the neighborhood optimal classifier, that extends the Bayes optimal classifier outside its support by using the label of the closest in-support point. We then argue that this classifier maximizes the size of its robustness regions subject to the constraint of having accuracy equal to the Bayes optimal. We then present sufficient conditions under which general non-parametric methods that can be represented as weight functions converge towards this limit, and show that both nearest neighbors and kernel classifiers satisfy them under certain condition 
    more » « less
  7. Instance-based interpretation methods have been widely studied for supervised learning methods as they help explain how black box neural networks predict. However, instance-based interpretations remain ill-understood in the context of unsupervised learning. In this paper, we investigate influence functions [Koh and Liang, 2017], a popular instance-based interpretation method, for a class of deep generative models called variational auto-encoders (VAE). We formally frame the counter-factual question answered by influence functions in this setting, and through theoretical analysis, examine what they reveal about the impact of training samples on classical unsupervised learning methods. We then introduce VAE- TracIn, a computationally efficient and theoretically sound solution based on Pruthi et al. [2020], for VAEs. Finally, we evaluate VAE-TracIn on several real world datasets with extensive quantitative and qualitative analysis. 
    more » « less
  8. A growing body of research has shown that many classifiers are susceptible to adversarial exam- ples – small strategic modifications to test inputs that lead to misclassification. In this work, we study general non-parametric methods, with a view towards understanding when they are ro- bust to these modifications. We establish general conditions under which non-parametric methods are r-consistent – in the sense that they converge to optimally robust and accurate classifiers in the large sample limit. Concretely, our results show that when data is well-separated, nearest neighbors and kernel clas- sifiers are r-consistent, while histograms are not. For general data distributions, we prove that pre- processing by Adversarial Pruning (Yang et al., 2019) – that makes data well-separated – followed by nearest neighbors or kernel classifiers also leads to r-consistency. 
    more » « less
  9. Machine learning is being increasingly used by individu- als, research institutions, and corporations. This has resulted in the surge of Machine Learning-as-a-Service (MLaaS) - cloud services that provide (a) tools and resources to learn the model, and (b) a user-friendly query interface to access the model. However, such MLaaS systems raise concerns such as model extraction. In model extraction attacks, adversaries maliciously exploit the query interface to steal the model. More precisely, in a model extraction attack, a good approxi- mation of a sensitive or proprietary model held by the server is extracted (i.e. learned) by a dishonest user who interacts with the server only via the query interface. This attack was introduced by Tramèr et al. at the 2016 USENIX Security Symposium, where practical attacks for various models were shown. We believe that better understanding the efficacy of model extraction attacks is paramount to designing secure MLaaS systems. To that end, we take the first step by (a) formalizing model extraction and discussing possible defense strategies, and (b) drawing parallels between model extraction and established area of active learning. In particular, we show that recent advancements in the active learning domain can be used to implement powerful model extraction attacks, and investigate possible defense strategies. 
    more » « less
  10. Adversarially robust machine learning has re- ceived much recent attention. However, prior attacks and defenses for non-parametric clas- sifiers have been developed in an ad-hoc or classifier-specific basis. In this work, we take a holistic look at adversarial examples for non- parametric classifiers, including nearest neigh- bors, decision trees, and random forests. We provide a general defense method, adversar- ial pruning, that works by preprocessing the dataset to become well-separated. To test our defense, we provide a novel attack that applies to a wide range of non-parametric classifiers. Theoretically, we derive an optimally robust classifier, which is analogous to the Bayes Op- timal. We show that adversarial pruning can be viewed as a finite sample approximation to this optimal classifier. We empirically show that our defense and attack are either better than or competitive with prior work on non- parametric classifiers. Overall, our results pro- vide a strong and broadly-applicable baseline for future work on robust non-parametrics. 
    more » « less