skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Identifying the effects of scaffolding on learners’ temporal deployment of self-regulated learning operations during game-based learning using multimodal data
IntroductionSelf-regulated learning (SRL), or learners’ ability to monitor and change their own cognitive, affective, metacognitive, and motivational processes, encompasses several operations that should be deployed during learning including Searching, Monitoring, Assembling, Rehearsing, and Translating (SMART). Scaffolds are needed within GBLEs to both increase learning outcomes and promote the accurate and efficient use of SRL SMART operations. This study aims to examine how restricted agency (i.e., control over one’s actions) can be used to scaffold learners’ SMART operations as they learn about microbiology with Crystal Island, a game-based learning environment. MethodsUndergraduate students (N = 94) were randomly assigned to one of two conditions: (1) Full Agency, where participants were able to make their own decisions about which actions they could take; and (2) Partial Agency, where participants were required to follow a pre-defined path that dictated the order in which buildings were visited, restricting one’s control. As participants played Crystal Island, participants’ multimodal data (i.e., log files, eye tracking) were collected to identify instances where participants deployed SMART operations. ResultsResults from this study support restricted agency as a successful scaffold of both learning outcomes and SRL SMART operations, where learners who were scaffolded demonstrated more efficient and accurate use of SMART operations. DiscussionThis study provides implications for future scaffolds to better support SRL SMART operations during learning and discussions for future directions for future studies scaffolding SRL during game-based learning.  more » « less
Award ID(s):
1761178
PAR ID:
10475814
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Frontiers
Date Published:
Journal Name:
Frontiers in Psychology
Volume:
14
ISSN:
1664-1078
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Undergraduate students ( N = 82) learned about microbiology with Crystal Island, a game-based learning environment (GBLE), which required participants to interact with instructional materials (i.e., books and research articles, non-player character [NPC] dialogue, posters) spread throughout the game. Participants were randomly assigned to one of two conditions: full agency , where they had complete control over their actions, and partial agency , where they were required to complete an ordered play-through of Crystal Island. As participants learned with Crystal Island, log-file and eye-tracking time series data were collected to pinpoint instances when participants interacted with instructional materials. Hierarchical linear growth models indicated relationships between eye gaze dwell time and (1) the type of representation a learner gathered information from (i.e., large sections of text, poster, or dialogue); (2) the ability of the learner to distinguish relevant from irrelevant information; (3) learning gains; and (4) agency. Auto-recurrence quantification analysis (aRQA) revealed the degree to which repetitive sequences of interactions with instructional material were random or predictable. Through hierarchical modeling, analyses suggested that greater dwell times and learning gains were associated with more predictable sequences of interaction with instructional materials. Results from hierarchical clustering found that participants with restricted agency and more recurrent action sequences had greater learning gains. Implications are provided for how learning unfolds over learners' time in game using a non-linear dynamical systems analysis and the extent to which it can be supported within GBLEs to design advanced learning technologies to scaffold self-regulation during game play. 
    more » « less
  2. Abstract. Game-based learning environments (GBLEs) are often criticized for not offering adequate support for students when learning and problem solving within these environments. A key aspect of GBLEs is the verbal representation of information such as text. This study examined learners’ metacognitive judgments of informational text (e.g., books and articles) through eye gaze behaviors within CRYSTAL ISLAND (CI). Ninety-one undergraduate students interacted with game elements during problem-solving in CI, a GBLE focused on facilitating the development of self-regulated learning (SRL) skills and domain-specific knowledge in microbiology. The results suggest engaging with informational text along with other goal-directed actions (actions needed to achieve the end goal) are large components of time spent within CI. Our findings revealed goal-directed actions, specifically reading informational texts, were significant predictors of participants’ proportional learning gains (PLGs) after problem solving with CI. Additionally, we found significant differences in PLGs where participants who spent a greater time fixating and reengaging with goal- relevant text within the environment demonstrated greater proportional learning after problem solving in CI. 
    more » « less
  3. The goal of this study was to assess how metacognitive monitoring and scientific reasoning impacted the efficiency of game completion during learning with Crystal Island, a game-based learning environment that fosters self-regulated learning and scientific reasoning by having participants solve the mystery of what illness impacted inhabitants of the island. We conducted sequential pattern mining and differential sequence mining on 64 undergraduate participants’ hypothesis testing behavior. Patterns were coded based on the relevancy of what items were being tested for, and the items themselves. Results revealed that participants who were more efficient at solving the mystery tested significantly fewer partially-relevant and irrelevant items than less efficient participants. Additionally, more efficient participants had fewer sequences of testing items overall, and significantly lower instance support values of the PartiallyRelevant--Relevant to Relevant--Relevant and PartiallyRelevant--PartiallyRelevant to Relevant--Partially Relevant sequences compared to less efficient participants. These findings have implications for designing adaptive GBLEs that scaffold participants based on in-game behaviors. 
    more » « less
  4. Self-regulated learning (SRL) is the ability to regulate cognitive, metacognitive, motivational, and emotional states while learning and is posited to be a strong predictor of academic success. It is therefore important to provide learners with effective instructions to promote more meaningful and effective SRL processes. One way to implement SRL instructions is through providing real-time SRL scaffolding while learners engage with a task. However, previous studies have tended to focus on fixed scaffolding rather than adaptive scaffolding that is tailored to student actions. Studies that have investigated adaptive scaffolding have not adequately distinguished between the effects of adaptive and fixed scaffolding compared to a control condition. Moreover, previous studies have tended to investigate the effects of scaffolding at the task level rather than shorter time segments—obscuring the impact of individual scaffolds on SRL processes. To address these gaps, we (a) collected trace data about student activities while working on a multi-source writing task and (b) analyzed these data using a cutting-edge learning analytic technique— ordered network analysis (ONA)—to model, visualize, and explain how learners' SRL processes changed in relation to the scaffolds. At the task level, our results suggest that learners who received adaptive scaffolding have significantly different patterns of SRL processes compared to the fixed scaffolding and control conditions. While not significantly different, our results at the task segment level suggest that adaptive scaffolding is associated with earlier engagement in SRL processes. At both the task level and task segment level, those who received adaptive scaffolding, compared to the other conditions, exhibited more task-guided learning processes such as referring to task instructions and rubrics in relation to their reading and writing. This study not only deepens our understanding of the effects of scaffolding at different levels of analysis but also demonstrates the use of a contemporary learning analytic technique for evaluating the effects of different kinds of scaffolding on learners' SRL processes. 
    more » « less
  5. Abstract Undergraduate STEM lecture courses enroll hundreds who must master declarative, conceptual, and applied learning objectives. To support them, instructors have turned to active learning designs that require students to engage inself-regulated learning(SRL). Undergraduates struggle with SRL, and universities provide courses, workshops, and digital training to scaffold SRL skill development and enactment. We examined two theory-aligned designs of digital skill trainings that scaffold SRL and how students’ demonstration of metacognitive knowledge of learning skills predicted exam performance in biology courses where training took place. In Study 1, students’ (n = 49) responses to training activities were scored for quality and summed by training topic and level of understanding. Behavioral and environmental regulation knowledge predicted midterm and final exam grades; knowledge of SRL processes did not. Declarative and conceptual levels of skill-mastery predicted exam performance; application-level knowledge did not. When modeled by topic at each level of understanding, declarative knowledge of behavioral and environmental regulation and conceptual knowledge of cognitive strategies predicted final exam performance. In Study 2 (n = 62), knowledge demonstrated during a redesigned video-based multimedia version of behavioral and environmental regulation again predicted biology exam performance. Across studies, performance on training activities designed in alignment with skill-training models predicted course performances and predictions were sustained in a redesign prioritizing learning efficiency. Training learners’ SRL skills –and specifically cognitive strategies and environmental regulation– benefited their later biology course performances across studies, which demonstrate the value of providing brief, digital activities to develop learning skills. Ongoing refinement to materials designed to develop metacognitive processing and learners’ ability to apply skills in new contexts can increase benefits. 
    more » « less