skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Eliciting and refining conceptions of STEM education: A series of activities for professional development
Integrated STEM (science, technology, engineering, and mathematics) education is becoming increasingly common in K–12 classrooms. However, various definitions of STEM education exist that make it challenging for teachers to know what to implement and how to do so in their classrooms. In this article, we describe a series of activities used in a week- long professional development workshop designed to elicit K–12 teachers’ conceptions of STEM and the roles that science, technology, engineering, and mathematics play in STEM education. These activities not only engage teachers in conversations with peers and colleagues in a professional development setting but also enable teachers to reflect on their learning related to STEM education in the context of creating lesson plans and considering future teaching. In addition to describing these activities, we share suggestions related to how these activities may be used in venues outside of professional development.  more » « less
Award ID(s):
1812794
PAR ID:
10475837
Author(s) / Creator(s):
Publisher / Repository:
Association for Science Teacher Education
Date Published:
Journal Name:
Innovations in Science Teacher Education
ISSN:
2472-2553
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Integrated STEM approaches in K-12 science and math instruction can be more engaging and meaningful for students and often meet the curriculum content and practice goals better than single-subject lessons. Engineering, as a key component of STEM education, offers hands-on, designed-based, problem solving activities to drive student interest and confidence in STEM overall. However, K-12 STEM teachers may not feel equipped to implement engineering practices and may even experience anxiety about trying them out in their classrooms without the added support of professional development and professional learning communities. To address these concerns and support engineering integration, this research study examined the experiences of 18 teachers in one professional development program dedicated to STEM integration and engineering pedagogy for K-12 classrooms. This professional development program positioned the importance of the inclusion of engineering content and encouraged teachers to explore community-based, collaborative activities that identified and spoke to societal needs and social impacts through engineering integration. Data collected from two of the courses in this project, Enhancing Mathematics with STEM and Engineering in the K-12 Classroom, included participant reflections, focus groups, microteaching lesson plans, and field notes. Through a case study approach and grounded theory analysis, themes of self-efficacy, active learning supports, and social justice teaching emerged. The following discussion on teachers’ engineering and STEM self-efficacy, teachers’ integration of engineering to address societal needs and social impacts, and teachers’ development in engineering education through hands-on activities, provides better understanding of engineering education professional development for K-12 STEM teachers. 
    more » « less
  2. The lack of a definition of the T in STEM (science, technology, engineering, and mathematics) acronym is pervasive, and it is often the teachers of STEM disciplines who inherit the task of defining the role of technology within their K-12 classrooms. These definitions often vary significantly, and they have profound implications for curricular and instructional goals within science and STEM classrooms. This theoretical paper summarizes of technology initiatives across science and STEM education from the past 30 years to present perspectives on the role of technology in science-focused STEM education. The most prominent perspectives describe technology as the following: (a) vocational education, industrial arts, or the product of engineering, (b) educational or instructional technology, (c) computing or computational thinking, and (d) the tools and practices used by practitioners of science, mathematics, and engineering. We have identified the fourth perspective as the most salient with respect to K-12 science and STEM education. This particular perspective is in many ways compatible with the other three perspectives, but this depends heavily on the beliefs, prior experiences, and instructional goals of teachers who use technology in their science or STEM classroom. 
    more » « less
  3. Understanding teachers’ conceptions surrounding integrated STEM education is vital to the successful implementation of integrated STEM curricula in K-12 classrooms. Of particular interest is understanding how teachers conceptualize the role of the STEM disciplines within their integrated STEM teaching. Further, despite knowing that content-agnostic characteristics of integrated STEM education are important, little is known about how teachers conceptualize the real-world problems, 21st century skills, and the promotion of STEM careers in their integrated STEM instruction. This study used an exploratory case study design to investigate conceptions of 19 K-12 science teachers after participating in an integrated STEM-focused professional development and implementing integrated STEM lessons into their classrooms. Our findings show that all teacher participants viewed STEM education from an integrative perspective that fosters the development of 21st century skills, using real-world problems to motivate students. Our findings also reveal that teachers have varying ideas related to the STEM disciplines within integrated STEM instruction, which could assist teacher educators in preparing high-quality professional development experiences. Findings related to real-world problems, 21st century skills, and STEM careers provide a window into how to best support teachers to include these characteristics into their teaching more explicitly. 
    more » « less
  4. Kong, S.C. (Ed.)
    This work aims to help high school STEM teachers integrate computational thinking (CT) into their classrooms by engaging teachers as curriculum co-designers. K-12 teachers who are not trained in computer science may not see the value of CT in STEM classrooms and how to engage their students in computational practices that reflect the practices of STEM professionals. To this end, we developed a 4-week professional development workshop for eight science and mathematics high school teachers to co-design computationally enhanced curriculum with our team of researchers. The workshop first provided an introduction to computational practices and tools for STEM education. Then, teachers engaged in co-design to enhance their science and mathematics curricula with computational practices in STEM. Data from surveys and interviews showed that teachers learned about computational thinking, computational tools, coding, and the value of collaboration after the professional development. Further, they were able to integrate multiple computational tools that engage their students in CT-STEM practices. These findings suggest that teachers can learn to use computational practices and tools through workshops, and that teachers collaborating with researchers in co-design to develop computational enhanced STEM curriculum may be a powerful way to engage students and teachers with CT in K-12 classrooms. 
    more » « less
  5. null (Ed.)
    Integrated approaches to teaching science, technology, engineering, and mathematics (commonly referred to as STEM education) in K-12 classrooms have resulted in a growing number of teachers incorporating engineering in their science classrooms. Such changes are a result of shifts in science standards to include engineering as evidenced by the Next Generation Science Standards. To date, 20 states and the District of Columbia have adopted the NGSS and another 24 have adopted standards based on the Framework for K-12 Science Education. Despite the increased presence of engineering and integrated STEM education in K-12 education, there are several concerns to consider. One concern is the limited availability of observation instruments appropriate for instruction where multiple STEM disciplines are present and integrated with one another. Addressing this concern requires the development of a new observation instrument, designed with integrated STEM instruction in mind. An instrument such as this has implications for both research and practice. For example, research using this instrument could help educators compare integrated STEM instruction across grade bands. Additionally, this tool could be useful in the preparation of pre-service teachers and professional development of in-service teachers new to integrated STEM education and formative learning through professional learning communities or classroom coaching. The work presented here describes in detail the development of an integrated STEM observation instrument that can be used for both research and practice. Over a period of approximately 18-months, a team of STEM educators and educational researchers developed a 10-item integrated STEM observation instrument for use in K-12 science and engineering classrooms. The process of developing the instrument began with establishing a conceptual framework, drawing on the integrated STEM research literature, national standards documents, and frameworks for both K-12 engineering education and integrated STEM education. As part of the instrument development process, the project team had access to over 2000 classroom videos where integrated STEM education took place. Initial analysis of a selection of these videos helped the project team write a preliminary draft instrument consisting of 52 items. Through several rounds of revisions, including the construction of detailed scoring levels of the items and collapsing of items that significantly overlapped, and piloting of the instrument for usability, items were added, edited, and/or removed for various reasons. These reasons included issues concerning the intricacy of the observed phenomenon or the item not being specific to integrated STEM education (e.g., questioning). In its final form, the instrument consists of 10 items, each comprising four descriptive levels. Each item is also accompanied by a set of user guidelines, which have been refined by the project team as a result of piloting the instrument and reviewed by external experts in the field. The instrument has shown to be reliable with the project team and further validation is underway. This instrument will be of use to a wide variety of educators and educational researchers looking to understand the implementation of integrated STEM education in K-12 science and engineering classrooms. 
    more » « less