skip to main content


This content will become publicly available on October 16, 2024

Title: Reaction Chemistry at Discrete Organometallic Fragments on Black Phosphorus
Abstract

Black phosphorus (bP) is a two‐dimensional van der Waals material unique in its potential to serve as a support for single‐site catalysts due to its similarity to molecular phosphines, ligands quintessential in homogeneous catalysis. However, there is a scarcity of synthetic methods to install single metal centers on the bP lattice. Here, we demonstrate the functionalization of bP nanosheets with molecular Re and Mo complexes. A suite of characterization techniques, including infrared, X‐ray photoelectron and X‐ray absorption spectroscopy as well as scanning transmission electron microscopy corroborate that the functionalized nanosheets contain a high density of discrete metal centers directly bound to the bP surface. Moreover, the supported metal centers are chemically accessible and can undergo ligand exchange transformations without detaching from the surface. The steric and electronic properties of bP as a ligand are estimated with respect to molecular phosphines. Sterically, bP resembles tri(tolyl)phosphine when monodentate to a metal center, and bis(diphenylphosphino)propane when bidentate, whereas electronically bP is a σ‐donor as strong as a trialkyl phosphine. This work is foundational in elucidating the nature of black phosphorus as a ligand and underscores the viability of using bP as a basis for single‐site catalysts.

 
more » « less
Award ID(s):
2045013
NSF-PAR ID:
10475982
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie International Edition
Volume:
62
Issue:
49
ISSN:
1433-7851
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Black phosphorus (bP) is a two‐dimensional van der Waals material unique in its potential to serve as a support for single‐site catalysts due to its similarity to molecular phosphines, ligands quintessential in homogeneous catalysis. However, there is a scarcity of synthetic methods to install single metal centers on the bP lattice. Here, we demonstrate the functionalization of bP nanosheets with molecular Re and Mo complexes. A suite of characterization techniques, including infrared, X‐ray photoelectron and X‐ray absorption spectroscopy as well as scanning transmission electron microscopy corroborate that the functionalized nanosheets contain a high density of discrete metal centers directly bound to the bP surface. Moreover, the supported metal centers are chemically accessible and can undergo ligand exchange transformations without detaching from the surface. The steric and electronic properties of bP as a ligand are estimated with respect to molecular phosphines. Sterically, bP resembles tri(tolyl)phosphine when monodentate to a metal center, and bis(diphenylphosphino)propane when bidentate, whereas electronically bP is a σ‐donor as strong as a trialkyl phosphine. This work is foundational in elucidating the nature of black phosphorus as a ligand and underscores the viability of using bP as a basis for single‐site catalysts.

     
    more » « less
  2. A novel synthesis of diphenyl(2-thienyl)phosphine, along with its’ oxide, sulfide and selenide derivatives, is reported here. These phosphines have been characterized by NMR, IR, MS and X-Ray crystallography. The phosphine oxide derivative was reacted with a selection of lanthanide( iii ) nitrates and triflates, LnX 3 , to give the resultant metal–ligand complexes. These complexes have also been characterized by NMR, IR, MS and X-Ray crystallography. Single crystal X-Ray diffraction data shows a difference in metal–ligand complex stoichiometry and stereochemistry depending on the counteranion (nitrate vs. triflate). The [Ln(Ar 3 PO) 3 (NO 3 ) 3 ] ligand–nitrate complexes are nine-coordinate to the metal in the solid state (bidentate nitrate), featuring a 1 : 3 lanthanide–ligand ratio and bear an overall octahedral arrangement of the six, coordinated ligands. Our [Ln(Ar 3 PO) 3 (NO 3 ) 3 ] ligand–nitrate complexes gave three examples of fac -stereochemistry, where mer -stereochemistry is almost universally observed in the literature of highly related [Ln(Ar 3 PO) 3 (NO 3 ) 3 ] complexes. For the Tb complexes, two different arrangements of the ligands around the metal were observed in the solid state for [Tb(Ar 3 PO) 3 (NO 3 ) 3 ] and [Tb(Ar 3 PO) 4 (OTf) 2 ] [OTf]. [Tb(Ar 3 PO) 3 (NO 3 ) 3 ] is strictly nine-coordinate, ligand mer -stereochemistry in the solid state, and [Tb(Ar 3 PO) 4 (OTf) 2 ] [OTf] is strictly octahedral, six-coordinate, with a square-planar stereochemical arrangement of the phosphine oxide ligands around the metal. 
    more » « less
  3. Abstract

    Reduction of d2metal–oxo ions of the form [MO(PP)2Cl]+(M=Mo, W; PP=chelating diphosphine) produces d3MO(PP)2Cl complexes, which include the first isolated examples in group 6. The stability and reactivity of the MO(PP)2Cl compounds are found to depend upon the steric bulk of the phosphine ligands: derivatives with bulky phosphines that shield the oxo ligand are stable enough to be isolated, whereas those with phosphines that leave the oxo ligand exposed are more reactive and observed transiently. Magnetic measurements and DFT calculations on MoO(dppe)2Cl indicate the d3compounds are low spin with a2[(dxy)2(π*(MoO))1] configuration. X‐ray crystallographic and vibrational‐spectroscopic studies on d2and d3[MoO(dppe)2Cl]0/+establish that the d3compound possesses a reduced M−O bond order and significantly longer Mo−O bond, accounting for its greater reactivity. These results indicate that the oxo‐centered reactivity of d3complexes may be controlled through ligand variation.

     
    more » « less
  4. Abstract

    Reduction of d2metal–oxo ions of the form [MO(PP)2Cl]+(M=Mo, W; PP=chelating diphosphine) produces d3MO(PP)2Cl complexes, which include the first isolated examples in group 6. The stability and reactivity of the MO(PP)2Cl compounds are found to depend upon the steric bulk of the phosphine ligands: derivatives with bulky phosphines that shield the oxo ligand are stable enough to be isolated, whereas those with phosphines that leave the oxo ligand exposed are more reactive and observed transiently. Magnetic measurements and DFT calculations on MoO(dppe)2Cl indicate the d3compounds are low spin with a2[(dxy)2(π*(MoO))1] configuration. X‐ray crystallographic and vibrational‐spectroscopic studies on d2and d3[MoO(dppe)2Cl]0/+establish that the d3compound possesses a reduced M−O bond order and significantly longer Mo−O bond, accounting for its greater reactivity. These results indicate that the oxo‐centered reactivity of d3complexes may be controlled through ligand variation.

     
    more » « less
  5. Metal–organic coordination networks at surfaces, formed by on-surface redox assembly, are of interest for designing specific and selective chemical function at surfaces for heterogeneous catalysts and other applications. The chemical reactivity of single-site transition metals in on-surface coordination networks, which is essential to these applications, has not previously been fully characterized. Here, we demonstrate with a surface-supported, single-site V system that not only are these sites active toward dioxygen activation, but the products of that reaction show much higher selectivity than traditional vanadium nanoparticles, leading to only one V-oxo product. We have studied the chemical reactivity of one-dimensional metal–organic vanadium – 3,6-di(2-pyridyl)-1,2,4,5-tetrazine (DPTZ) chains with O 2 . The electron-rich chains self-assemble through an on-surface redox process on the Au(100) surface and are characterized by X-ray photoelectron spectroscopy, scanning tunneling microscopy, high-resolution electron energy loss spectroscopy, and density functional theory. Reaction of V-DPTZ chains with O 2 causes an increase in V oxidation state from V II to V IV , resulting in a single strongly bonded (DPTZ 2− )V IV O product and spillover of O to the Au surface. DFT calculations confirm these products and also suggest new candidate intermediate states, providing mechanistic insight into this on-surface reaction. In contrast, the oxidation of ligand-free V is less complete and results in multiple oxygen-bound products. This demonstrates the high chemical selectivity of single-site metal centers in metal–ligand complexes at surfaces compared to metal nanoislands. 
    more » « less