We study the quantum-classical correspondence of an experimentally accessible system of interacting bosons in a tilted triple-well potential. With the semiclassical analysis, we get a better understanding of the different phases of the quantum system and how they could be used for quantum information science. In the integrable limits, our analysis of the stationary points of the semiclassical Hamiltonian reveals critical points associated with second-order quantum phase transitions. In the nonintegrable domain, the system exhibits crossovers. Depending on the parameters and quantities, the quantum-classical correspondence holds for very few bosons. In some parameter regions, the ground state is robust (highly sensitive) to changes in the interaction strength (tilt amplitude), which may be of use for quantum information protocols (quantum sensing).
more »
« less
Particle Trajectories for Quantum Maps
Abstract We study the trajectories of a semiclassical quantum particle under repeated indirect measurement by Kraus operators, in the setting of the quantized torus. In between measurements, the system evolves via either Hamiltonian propagators or metaplectic operators. We show in both cases the convergence in total variation of the quantum trajectory to its corresponding classical trajectory, as defined by the propagation of a semiclassical defect measure. This convergence holds up to the Ehrenfest time of the classical system, which is larger when the system is “less chaotic.” In addition, we present numerical simulations of these effects. In proving this result, we provide a characterization of a type of semi-classical defect measure we call uniform defect measures. We also prove derivative estimates of a function composed with a flow on the torus.
more »
« less
- Award ID(s):
- 1952939
- PAR ID:
- 10476003
- Publisher / Repository:
- Springer Science + Business Media
- Date Published:
- Journal Name:
- Annales Henri Poincaré
- Volume:
- 25
- Issue:
- 8
- ISSN:
- 1424-0637
- Format(s):
- Medium: X Size: p. 3699-3738
- Size(s):
- p. 3699-3738
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We derive the $$\mathcal{L}$$-MFE method to incorporate Lindblad jump operator dynamics into the mean-field Ehrenfest (MFE) approach. We map the density matrix evolution of Lindblad dynamics onto pure state coefficients using trajectory averages. We use simple assumptions to construct the $$\mathcal{L}$$-MFE method that satisfies this exact mapping. This establishes a method that uses independent trajectories which exactly reproduces Lindblad decay dynamics using a wavefunction description, with deterministic changes of the magnitudes of the quantum expansion coefficients, while only adding on a stochastic phase. We further demonstrate that when including nuclei in the Ehrenfest dynamics, the $$\mathcal{L}$$-MFE method gives semi-quantitatively accurate results, with the accuracy limited by the accuracy of the approximations present in the semiclassical MFE approach. This work provides a general framework to incorporate Lindblad dynamics into semiclassical or mixed quantum-classical simulations.more » « less
-
A<sc>bstract</sc> We study further the duality between semiclassical AdS3and formal CFT2ensembles. First, we study torus wormholes (Maldacena-Maoz wormholes with two torus boundaries) with one insertion or two insertions on each boundary and find that they give non-decaying contribution to the product of two torus one-point or two-point functions at late-time. Second, we study the ℤ2quotients of a torus wormhole such that the outcome has one boundary. We identify quotients that give non-decaying contributions to the torus two-point function at late-time. We comment on reflection (R) or time-reversal (T) symmetry vs. the combination RT that is a symmetry of any relativistic field theory. RT symmetry itself implies that to the extent that a relativistic quantum field theory exhibits random matrix statistics it should be of the GOE type for bosonic states and of the GSE type for fermionic states. We discuss related implications of these symmetries for wormholes.more » « less
-
Abstract Motivated by the challenge of sampling Gibbs measures with nonconvex potentials, we study a continuum birth–death dynamics. We improve results in previous works (Liuet al2023Appl. Math. Optim.8748; Luet al2019 arXiv:1905.09863) and provide weaker hypotheses under which the probability density of the birth–death governed by Kullback–Leibler divergence or byχ2divergence converge exponentially fast to the Gibbs equilibrium measure, with a universal rate that is independent of the potential barrier. To build a practical numerical sampler based on the pure birth–death dynamics, we consider an interacting particle system, which is inspired by the gradient flow structure and the classical Fokker–Planck equation and relies on kernel-based approximations of the measure. Using the technique of Γ-convergence of gradient flows, we show that on the torus, smooth and bounded positive solutions of the kernelised dynamics converge on finite time intervals, to the pure birth–death dynamics as the kernel bandwidth shrinks to zero. Moreover we provide quantitative estimates on the bias of minimisers of the energy corresponding to the kernelised dynamics. Finally we prove the long-time asymptotic results on the convergence of the asymptotic states of the kernelised dynamics towards the Gibbs measure.more » « less
-
Ultrashort pulses propagating in nonlinear nanophotonic waveguides can simultaneously leverage both temporal and spatial field confinement, promising a route towards single-photon nonlinearities in an all-photonic platform. In this multimode quantum regime, however, faithful numerical simulations of pulse dynamics naïvely require a representation of the state in an exponentially large Hilbert space. Here, we employ a time-domain, matrix product state (MPS) representation to enable efficient simulations by exploiting the entanglement structure of the system. To extract physical insight from these simulations, we develop an algorithm to unravel the MPS quantum state into constituent temporal supermodes, enabling, e.g., access to the phase-space portraits of arbitrary pulse waveforms. As a demonstration, we perform exact numerical simulations of a Kerr soliton in the quantum regime. We observe the development of non-classical Wigner-function negativity in the solitonic mode as well as quantum corrections to the semiclassical dynamics of the pulse. A similar analysis of simultons reveals a unique entanglement structure between the fundamental and second harmonics. Our approach is also readily compatible with quantum trajectory theory, allowing full quantum treatment of propagation loss and decoherence. We expect this work to establish the MPS technique as part of a unified engineering framework for the emerging field of broadband quantum photonics.more » « less
An official website of the United States government
