skip to main content


Title: Community-engaged ancient DNA project reveals diverse origins of 18th-century African descendants in Charleston, South Carolina

In this study, we present the results of community-engaged ancient DNA research initiated after the remains of 36 African-descended individuals dating to the late 18th century were unearthed in the port city of Charleston, South Carolina. The Gullah Society of Charleston, along with other Charleston community members, initiated a collaborative genomic study of these ancestors of presumed enslaved status, in an effort to visibilize their histories. We generated 18 low-coverage genomes and 31 uniparental haplotypes to assess their genetic origins and interrelatedness. Our results indicate that they have predominantly West and West-Central African genomic ancestry, with one individual exhibiting some genomic affiliation with populations in the Americas. Most were assessed as genetic males, and no autosomal kin were identified among them. Overall, this study expands our understanding of the colonial histories of African descendant populations in the US South.

 
more » « less
Award ID(s):
2105384
NSF-PAR ID:
10476085
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Editor(s):
Stone, Anne
Publisher / Repository:
Proceedings of the National Academy of Sciences of the United States of America
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
120
Issue:
3
ISSN:
0027-8424
Page Range / eLocation ID:
e2201620120
Subject(s) / Keyword(s):
["paleogenomics","trans-Atlantic slave trade","Colonial North America","haplotype","ancestry"]
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Background Large medical centers in urban areas, like Los Angeles, care for a diverse patient population and offer the potential to study the interplay between genetic ancestry and social determinants of health. Here, we explore the implications of genetic ancestry within the University of California, Los Angeles (UCLA) ATLAS Community Health Initiative—an ancestrally diverse biobank of genomic data linked with de-identified electronic health records (EHRs) of UCLA Health patients ( N =36,736). Methods We quantify the extensive continental and subcontinental genetic diversity within the ATLAS data through principal component analysis, identity-by-descent, and genetic admixture. We assess the relationship between genetically inferred ancestry (GIA) and >1500 EHR-derived phenotypes (phecodes). Finally, we demonstrate the utility of genetic data linked with EHR to perform ancestry-specific and multi-ancestry genome and phenome-wide scans across a broad set of disease phenotypes. Results We identify 5 continental-scale GIA clusters including European American (EA), African American (AA), Hispanic Latino American (HL), South Asian American (SAA) and East Asian American (EAA) individuals and 7 subcontinental GIA clusters within the EAA GIA corresponding to Chinese American, Vietnamese American, and Japanese American individuals. Although we broadly find that self-identified race/ethnicity (SIRE) is highly correlated with GIA, we still observe marked differences between the two, emphasizing that the populations defined by these two criteria are not analogous. We find a total of 259 significant associations between continental GIA and phecodes even after accounting for individuals’ SIRE, demonstrating that for some phenotypes, GIA provides information not already captured by SIRE. GWAS identifies significant associations for liver disease in the 22q13.31 locus across the HL and EAA GIA groups (HL p -value=2.32×10 −16 , EAA p -value=6.73×10 −11 ). A subsequent PheWAS at the top SNP reveals significant associations with neurologic and neoplastic phenotypes specifically within the HL GIA group. Conclusions Overall, our results explore the interplay between SIRE and GIA within a disease context and underscore the utility of studying the genomes of diverse individuals through biobank-scale genotyping linked with EHR-based phenotyping. 
    more » « less
  2. Abstract Aim

    Species with wide distributions spanning the African Guinean and Congolian rain forests are often composed of genetically distinct populations or cryptic species with geographic distributions that mirror the locations of the remaining forest habitats. We used phylogeographic inference and demographic model testing to evaluate diversification models in a widespread rain forest species, the African foam‐nest treefrogChiromantis rufescens.

    Location

    Guinean and Congolian rain forests, West and Central Africa.

    Taxon

    Chiromantis rufescens.

    Methods

    We collected mitochondrial DNA (mtDNA) and single‐nucleotide polymorphism (SNP) data for 130 samples ofC. rufescens. After estimating population structure and inferring species trees using coalescent methods, we tested demographic models to evaluate alternative population divergence histories that varied with respect to gene flow, population size change and periods of isolation and secondary contact. Species distribution models were used to identify the regions of climatic stability that could have served as forest refugia since the last interglacial.

    Results

    Population structure withinC. rufescensresembles the major biogeographic regions of the Guinean and Congolian forests. Coalescent‐based phylogenetic analyses provide strong support for an early divergence between the western Upper Guinean forest and the remaining populations. Demographic inferences support diversification models with gene flow and population size changes even in cases where contemporary populations are currently allopatric, which provides support for forest refugia and barrier models. Species distribution models suggest that forest refugia were available for each of the populations throughout the Pleistocene.

    Main conclusions

    Considering historical demography is essential for understanding population diversification, especially in complex landscapes such as those found in the Guineo–Congolian forest. Population demographic inferences help connect the patterns of genetic variation to diversification model predictions. The diversification history ofC. rufescenswas shaped by a variety of processes, including vicariance from river barriers, forest fragmentation and adaptive evolution along environmental gradients.

     
    more » « less
  3. The 17th-century colonization of North America brought thousands of Europeans to Indigenous lands in the Delaware region, which comprises the eastern boundary of the Chesapeake Bay in what is now the Mid- Atlantic region of the United States.1 The demographic features of these initial colonial migrations are not uni- formly characterized, with Europeans and European-Americans migrating to the Delaware area from other countries and neighboring colonies as single persons or in family units of free persons, indentured servants, or tenant farmers.2 European colonizers also instituted a system of racialized slavery through which they forcibly transported thousands of Africans to the Chesapeake region. Historical information about African- descended individuals in the Delaware region is limited, with a population estimate of less than 500 persons by 1700 CE.3,4 To shed light on the population histories of this period, we analyzed low-coverage genomes of 11 individuals from the Avery’s Rest archaeological site (circa 1675–1725 CE), located in Delaware. Previous osteological and mitochondrial DNA (mtDNA) sequence analyses showed a southern group of eight individ- uals of European maternal descent, buried 15–20 feet from a northern group of three individuals of African maternal descent.5 Autosomal results further illuminate genomic similarities to Northwestern European refer- ence populations or West and West-Central African reference populations, respectively. We also identify three generations of maternal kin of European ancestry and a paternal parent-offspring relationship between an adult and child of African ancestry. These findings expand our understanding of the origins and familial relationships in late 17th and early 18th century North America. 
    more » « less
  4. Abstract Aim

    Numerous glacial refugia have been hypothesized along North America's North Pacific Coast that may have increased divergence of refugial taxa, leading to elevated endemism and subsequently clustered hybrid zones following deglaciation. The locations and community composition of these ice‐free areas remains controversial, but whole‐genome sequences now enable detailed analysis of the demographic and evolutionary histories of refugial taxa. Here, we use genomic data to test spatial and temporal processes of diversification among martens with respect to the Coastal Refugium Hypothesis, to understand the role of climate cycling in shaping diversity across complex landscapes.

    Location

    North America and North Pacific Coast archipelagos.

    Taxon

    North American martens (Martes).

    Methods

    Short‐read whole‐genome resequencing data were generated for 11 martens: fourM. americana, fourM. caurina, two hybrids, and one outgroup (Martes zibellina). Sampling was representative of known genetic clades within New World martens, including sampling within insular and continental hybrid zones and along the North Pacific Coast (five island populations).ADMIXTURE, F‐statistics, andD‐statistics (ABBA‐BABA) were used to identify introgression and infer directionality. Heterozygosity densities, estimated via PSMC, were used to characterize historical demography at and below the species level to infer refugial and colonization processes.

    Results

    Forest‐associated Pacific martens (M. caurina) are divided into distinct insular and continental clades consistent with the Coastal Refugium Hypothesis. There was no evidence of introgression on islands that received historical translocations of American pine martens (M. americana), but introgression was detected in two active zones of secondary contact: one insular and one continental. Only early‐generational hybrids were identified across multiple hybrid zones, a pattern consistent with potential genetic swamping ofM. caurinabyM. americana.

    Main conclusions

    Despite an incomplete fossil record, genomic evidence supports the persistence of forest‐associated martens, likely the insular Pacific marten lineage, along the western edges of the Alexander Archipelago during the Last Glacial Maximum. This discovery informs our understanding of refugial paleoenvironments, critical to interpreting refugial timing, duration, and community composition. Genomic reevaluations of other taxa along North America's North Pacific Coast may yield new and deeper perspectives on the history of refugial forest communities and the role of dynamic climate shifts in shaping high‐latitude diversity across complex insular landscapes.

     
    more » « less
  5. Abstract Background

    The goal of this study is to evaluate germline genetic variants in African American men with metastatic prostate cancer as compared to those in Caucasian men with metastatic prostate cancer in an effort to understand the role of genetic factors in these populations.

    Methods

    African American and Caucasian men with metastatic prostate cancer who had germline testing using multigene panels were used to generate comparisons. Germline genetic results, clinical parameters, and family histories between the two populations were analyzed.

    Results

    A total of 867 patients were included in this retrospective study, including 188 African American and 669 Caucasian patients. There was no significant difference in the likelihood of a pathogenic or likely‐pathogenic variants (PV/LPVs) between African American and Caucasian patients (p = .09). African American patients were more likely to have a variant of unknown significance than Caucasians (odds ratio [OR] = 1.95;p < .0001). BRCA1 PV/LPVs were higher in African Americans (OR = 4.86;p = .04). African American patients were less likely to have a PV/LPV in non‐BRCA DNA repair genes (OR = 0.30;p = .008). Family history of breast (OR = 2.09;p = .002) or ovarian cancer (OR = 2.33;p = .04) predicted PV/LPVs in Caucasians but not African‐Americans. This underscores the limitations of family history in AA men and the importance of personal history to guide germline testing in AA men.

    Conclusions

    In metastatic prostate cancer patients, PV/LPVs of tested genes did not vary by race, BRCA1 PV/LPVs were more common in the African American subset. However, PV/LPVs in non‐BRCA DNA repair genes were less likely to be encountered in African Americans. Family history associated with genetic testing results in Caucasians only.

     
    more » « less