skip to main content


This content will become publicly available on March 2, 2025

Title: Light-Enhanced Micropyramidal Sensors for Interleukin-6 Impedance Detection
The inflammation marker Interleukin 6 (IL-6) typically remains below 5 pg/mL in the serum of healthy individuals but can increase tenfold during inflammation in chronic conditions like COVID-19 and rheumatoid arthritis, as well as acute conditions like sepsis. This study is focused on the rapid detection of IL-6 to monitor both chronic and acute diseases. The novel sensor, designed with gold-coated micropyramids on the electrodes, was fabricated using the two-photon polymerization method, enabling low-volume sensing capabilities (2-3 μL). The micropyramids were surface functionalized with interleukin-6 antibodies towards developing an affinity biosensor specific to the physiological relevant range of IL-6 of 5.1 and 18.8 pg/mL in mild inflammation. Sensing was achieved by measuring impedance changes associated with IL-6 binding to the antibodies on the micropyramids interfaced using electrochemical impedance spectroscopy. It was observed that the signals from the lowest detection concentration was enhanced by 3 times at 1500 hz when the 532 nm green laser was incident on the micropyramids. This innovative approach can be expanded to the detection of cytokines not only in serum but also in respiratory samples. As a result, it opens up new avenues for monitoring local inflammation within the lungs and assessing systemic inflammation levels throughout the body.  more » « less
Award ID(s):
2018853 2050887
NSF-PAR ID:
10476213
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
IEEE
Date Published:
Journal Name:
The international IEEE Aerospace Conference
Format(s):
Medium: X
Location:
Big Sky, Montana
Sponsoring Org:
National Science Foundation
More Like this
  1. Colorimetric enzyme-linked immunosorbent assay (ELISA) has been widely applied as the gold-standard method for cytokine detection for decades. However, it has become a critical challenge to further improve the detection sensitivity of ELISA, as it is limited by the catalytic activity of enzymes. Herein, we report an enhanced colorimetric ELISA for ultrasensitive detection of interleukin-6 (IL-6, as a model cytokine for demonstration) using Pd@Pt core@shell nanodendrites (Pd@Pt NDs) as peroxidase nanomimics (named “Pd@Pt ND ELISA”), pushing the sensitivity up to femtomolar level. Specifically, the Pd@Pt NDs are rationally engineered by depositing Pt atoms on Pd nanocubes (NCs) to generate rough dendrite-like Pt skins on the Pd surfaces via Volmer–Weber growth mode. They can be produced on a large scale with highly uniform size, shape, composition, and structure. They exhibit significantly enhanced peroxidase-like catalytic activity with catalytic constants (Kcat) more than 2000-fold higher than those of horseradish peroxidase (HRP, an enzyme commonly used in ELISA). Using Pd@Pt NDs as the signal labels, the Pd@Pt ND ELISA presents strong colorimetric signals for the quantitative determination of IL-6 with a wide dynamic range of 0.05–100 pg mL−1 and an ultralow detection limit of 0.044 pg mL−1 (1.7 fM). This detection limit is 21-fold lower than that of conventional HRP-based ELISA. The reproducibility and specificity of the Pd@Pt ND ELISA are excellent. More significantly, the Pd@Pt ND ELISA was validated for analyzing IL-6 in human serum samples with high accuracy and reliability through recovery tests. Our results demonstrate that the colorimetric Pd@Pt ND ELISA is a promising biosensing tool for ultrasensitive determination of cytokines and thus is expected to be applied in a variety of clinical diagnoses and fundamental biomedical studies. 
    more » « less
  2. Paper-based biosensors are a potential paradigm of sensitivity achieved via microporous spreading/microfluidics, simplicity, and affordability. In this paper, we develop decorated paper with graphene and conductive polymer (herein referred to as graphene conductive polymer paper-based sensor or GCPPS) for sensitive detection of biomolecules. Planetary mixing resulted in uniformly dispersed graphene and conductive polymer ink, which was applied to laser-cut Whatman filter paper substrates. Scanning electron microscopy and Raman spectroscopy showed strong attachment of conductive polymer-functionalized graphene to cellulose fibers. The GCPPS detected dopamine and cytokines, such as tumor necrosis factor-alpha (TNF-α), and interleukin 6 (IL-6) in the ranges of 12.5–400 µM, 0.005–50 ng/mL, and 2 pg/mL–2 µg/mL, respectively, using a minute sample volume of 2 µL. The electrodes showed lower detection limits (LODs) of 3.4 µM, 5.97 pg/mL, and 9.55 pg/mL for dopamine, TNF-α, and IL-6 respectively, which are promising for rapid and easy analysis for biomarkers detection. Additionally, these paper-based biosensors were highly selective (no serpin A1 detection with IL-6 antibody) and were able to detect IL-6 antigen in human serum with high sensitivity and hence, the portable, adaptable, point-of-care, quick, minute sample requirement offered by our fabricated biosensor is advantageous to healthcare applications.

     
    more » « less
  3. Abstract

    Impedance-based protein detection sensors for point-of-care diagnostics require quantitative specificity, as well as rapid or real-time operation. Furthermore, microfabrication of these sensors can lead to the formation of factors suitable for in vivo operation. Herein, we present microfabricated needle-shaped microwell impedance sensors for rapid-sample-to-answer, label-free detection of cytokines, and other biomarkers. The microneedle form factor allows sensors to be utilized in transcutaneous or transvascular sensing applications. In vitro, experimental characterization confirmed sensor specificity and sensitivity to multiple proteins of interest. Mechanical characterization demonstrated sufficient microneedle robustness for transcutaneous insertion, as well as preserved sensor function postinsertion. We further utilized these sensors to carry out real-time in vivo quantification of human interleukin 8 (hIL8) concentration levels in the blood of transgenic mice that endogenously express hIL8. To assess sensor functionality, hIL8 concentration levels in serum samples from the same mice were quantified by ELISA. Excellent agreement between real-time in vivo sensor readings in blood and subsequent ELISA serum assays was observed over multiple transgenic mice expressing hIL8 concentrations from 62 pg/mL to 539 ng/mL.

     
    more » « less
  4. Abstract Mesenchymal stem cells (MSCs) are multipotent cells that can replicate and differentiate to different lineages of mesenchymal tissues, potentiating their use in regenerative medicine. Our previous work and other studies have indicated that mild heat shock enhances osteogenesis. However, the influence of pro-inflammatory cytokines on osteogenic differentiation during mildly elevated temperature conditions remains to be fully explored. In this study, human MSCs (hMSCs) were cultured with Tumor Necrosis Factor-alpha (TNF-a), an important mediator of the acute phase response, and Interleukin-6 (IL-6) which plays a role in damaging chronic inflammation, then heat shocked at 39ºC in varying frequencies - 1 hour per week (low), 1 hour every other day (mild), and 1 hour intervals three times per day every other day (high). DNA data showed that periodic mild heating inhibited suppression of cell growth caused by cytokines and induced maximal proliferation of hMSCs while high heating had the opposite effect. Quantitative osteogenesis assays show significantly higher levels of alkaline phosphatase activity and calcium precipitation in osteogenic cultures following mild heating compared to low heating or non-heated controls. These results demonstrate that periodic mild hyperthermia may be used to facilitate bone regeneration using hMSCs, and therefore may influence the design of heat-based therapies in vivo. 
    more » « less
  5. Abstract

    Preeclampsia (PE) is a major cause of perinatal and maternal mortality and morbidity, which affects 2% to 8% of pregnancies in the world. The aberrant maternal inflammation and angiogenic imbalance have been demonstrated to contribute to the pathogenesis of PE. This research aimed to investigate the effect of Astragaloside IV (AsIV) in the treatment of PE and the underlying mechanisms. A rat PE‐like model was established by tail vein injection of lipopolysaccharide (LPS) and different doses of AsIV (40 and 80 mg/kg) were treated at the same time. Systolic blood pressure, total urine protein and urine volume were observed. Serum and placenta inflammatory cytokines were measured by ELISA kit. The mRNA and protein expression of relative genes were analyzed by qRT‐PCR and Western blotting. In PE‐like rats, there were obvious increases in systolic blood pressure, total urine protein and urine volume, which were obviously alleviated by treatment with AsIV. Serum levels of interleukin (IL)‐1β, tumor necrosis factor alpha (TNF‐α), IL‐6 and IL‐18, as well as IL‐4, IL‐10, PIGF, VEGF and sFlt‐1, were all reversed by treatment with AsIV. Meanwhile, AsIV treatment improved abnormal pregnancy outcomes, such as low litter size and low fetal weight. In addition, AsIV treatment downregulated the mRNA expression of inflammatory gene IL‐1β and IL‐6 in PE rats model, and AsIV treatment inhibited the activation of TLR‐4, NF‐κB, and sFlt‐1 in the placenta of PE rats. Our findings indicated the first evidence that AsIV alleviated PE‐like signs, and this improvement effect is possibly through inhibition of inflammation response via the TLR4/NF‐κB signaling pathway.

     
    more » « less