skip to main content


This content will become publicly available on January 21, 2025

Title: Microlens Coupler from Integrated Photonic Circuit to Fiber Design for Space Application
This study presents a novel design for a microlens coupler to transfer light from a straight waveguide to a single-mode fiber (SMF). Our design combines improved mode matching and enhanced alignment tolerance compared to edge coupling. An investigation of the alignment tolerance is done by assessing coupling efficiency under various degrees of manufacturing-induced misalignment. Singlet and diffractive lenses are incorporated into our design to focus the light into the fiber precisely. Comprehensive simulations demonstrate that the diffractive lens outperforms edge coupling and singlet lens in coupling efficiency. Fabrication methods such as additive manufacturing are discussed for future works. Our findings underscore the potential of innovative microlens coupler design.  more » « less
Award ID(s):
2018853
NSF-PAR ID:
10476223
Author(s) / Creator(s):
; ;
Publisher / Repository:
IEEE Space Hardware and Radio Conference
Date Published:
Journal Name:
IEEE Space Hardware and Radio Conference
Format(s):
Medium: X
Location:
San Antonio, Texas, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. Recently, augmented reality (AR) displays have attracted considerable attention due to the highly immersive and realistic viewer experience they can provide. One key challenge of AR displays is the fundamental trade-off between the extent of the field-of-view (FOV) and the size of the eyebox, set by the conservation of etendue sets this trade-off. Exit-pupil expansion (EPE) is one possible solution to this problem. However, it comes at the cost of distributing light over a larger area, decreasing the overall system's brightness. In this work, we show that the geometry of the waveguide and the in-coupler sets a fundamental limit on how efficient the combiner can be for a given FOV. This limit can be used as a tool for waveguide designers to benchmark the in-coupling efficiency of their in-coupler gratings. We design a metasurface-based grating (metagrating) and a commonly used SRG as in-couplers using the derived limit to guide optimization. We then compare the diffractive efficiencies of the two types of in-couplers to the theoretical efficiency limit. For our chosen waveguide geometry, the metagrating's 28% efficiency surpasses the SRG's 20% efficiency and nearly matches the geometry-based limit of 29% due to the superior angular response control of metasurfaces compared to SRGs. This work provides new insight into the efficiency limit of waveguide-based combiners and paves a novel path toward implementing metasurfaces in efficient waveguide AR displays.

     
    more » « less
  2. Integrated lithium niobate (LN) photonic circuits have recently emerged as a promising candidate for advanced photonic functions such as high-speed modulation, nonlinear frequency conversion, and frequency comb generation. For practical applications, optical interfaces that feature low fiber-to-chip coupling losses are essential. So far, the fiber-to-chip loss (commonly >10  dB/facet) has dominated the total insertion losses of typical LN photonic integrated circuits, where on-chip losses can be as low as 0.03–0.1 dB/cm. Here we experimentally demonstrate a low-loss mode size converter for coupling between a standard lensed fiber and sub-micrometer LN rib waveguides. The coupler consists of two inverse tapers that convert the small optical mode of a rib waveguide into a symmetrically guided mode of a LN nanowire, featuring a larger mode area matched to that of a tapered optical fiber. The measured fiber-to-chip coupling loss is lower than 1.7 dB/facet with high fabrication tolerance and repeatability. Our results open the door for practical integrated LN photonic circuits efficiently interfaced with optical fibers. 
    more » « less
  3. Integrated lithium niobate (LN) photonic circuits have recently emerged as a promising candidate for advanced photonic functions such as high-speed modulation, nonlinear frequency conversion, and frequency comb generation. For practical applications, optical interfaces that feature low fiber-to-chip coupling losses are essential. So far, the fiber-to-chip loss (commonly>10  dB/facet) has dominated the total insertion losses of typical LN photonic integrated circuits, where on-chip losses can be as low as 0.03–0.1 dB/cm. Here we experimentally demonstrate a low-loss mode size converter for coupling between a standard lensed fiber and sub-micrometer LN rib waveguides. The coupler consists of two inverse tapers that convert the small optical mode of a rib waveguide into a symmetrically guided mode of a LN nanowire, featuring a larger mode area matched to that of a tapered optical fiber. The measured fiber-to-chip coupling loss is lower than 1.7 dB/facet with high fabrication tolerance and repeatability. Our results open the door for practical integrated LN photonic circuits efficiently interfaced with optical fibers.

     
    more » « less
  4. Abstract

    We demonstrate ultra-thin (1.5-3λ0), fabrication-error tolerant efficient diffractive terahertz (THz) optical elements designed using a computer-aided optimization-based search algorithm. The basic operation of these components is modeled using scalar diffraction of electromagnetic waves through a pixelated multi-level 3D-printed polymer structure. Through the proposed design framework, we demonstrate the design of various ultrathin planar THz optical elements, namely (i) a high Numerical Aperture (N.A.), broadband aberration rectified spherical lens (0.1 THz–0.3 THz), (ii) a spectral splitter (0.3 THz–0.6 THz) and (iii) an on-axis broadband transmissive hologram (0.3 THz–0.5 THz). Such an all-dielectric computational design-based approach is advantageous against metallic or dielectric metasurfaces from the perspective that it incorporates all the inherent structural advantages associated with a scalar diffraction based approach, such as (i) ease of modeling, (ii) substrate-less facile manufacturing, (iii) planar geometry, (iv) high efficiency along with(v)broadband operation, (vi) area scalability and (vii) fabrication error-tolerance. With scalability and error tolerance being two major bottlenecks of previous design strategies. This work is therefore, a significant step towards the design of THz optical elements by bridging the gap between structural and computational design i.e. through a hybrid design-based approach enabling considerably less computational resources than the previous state of the art. Furthermore, the approach used herein can be expanded to a myriad of optical elements at any wavelength regime.

     
    more » « less
  5. Waveguide displays have been shown to exhibit multiple interactions of light at the in-coupler diffractive surface, leading to light loss. Any losses at the in-coupler set a fundamental upper limit on the full-system efficiency. Furthermore, these losses vary spatially across the beam for each field, significantly decreasing the displayed image quality. We present a framework for alleviating the losses based on irradiance, efficiency, and MTF maps. We then derive and quantify the innate tradeoff between the in-coupling efficiency and the achievable modulation transfer function (MTF) characterizing image quality. Applying the framework, we show a new in-coupler architecture that mitigates the efficiency vs image quality tradeoff. In the example architecture, we demonstrate a computation speed that is 2,000 times faster than that of a commercial non-sequential ray tracer, enabling faster optimization and more thorough exploration of the parameter space. Results show that with this architecture, the in-coupling efficiency still meets the fundamental limit, while the MTF achieves the diffraction limit up to and including 30 cycles/deg, equivalent to 20/20 vision.

     
    more » « less