skip to main content


This content will become publicly available on April 28, 2024

Title: Electrode filling using capillary action of 3D printed elastomer microchannels
Soft polymer actuators are in increasing demand due to their more fluid like motion and flexibility when actuated than compared with rigid actuators, which makes them valuable in diverse engineering applications. One of the main types of soft polymer actuators is the dielectric elastomer actuator, whose working principle is to apply a voltage potential difference between electrodes to reduce the thickness of the elastomeric material while expanding its area. This paper looks at manufacturing a micro soft polymer dielectric elastomer actuator utilizing two-photon polymerization 3D printing. The actuator contains micro channels that are filled with an electrode by using capillary action. A complex helical geometry is designed, printed, and tested for electrode filling capabilities. Quite a few obstacles are described in this paper including the use of a newly released two-photon polymerization resin which has limited supporting resources, as well as the complex helical geometry having a large compliance that vastly complicates its fabrication, post-processing, handling, electrode filling, electrode integration, and actuation testing. However, these challenges are overcome by using the standard printing recipes currently available for the resins, adding electrode isolation layers, and printing thicker elastomer zones for more structural support. The results found solidify the approach of filling microchannels with electrodes through capillary action and lead to further the focus and creation of multi-functional micro soft actuators.  more » « less
Award ID(s):
2018853 2229155
NSF-PAR ID:
10476245
Author(s) / Creator(s):
;
Editor(s):
Madden, John D.; Anderson, Iain A.; Shea, Herbert R.
Publisher / Repository:
SPIE
Date Published:
Page Range / eLocation ID:
18
Format(s):
Medium: X
Location:
Long Beach, United States
Sponsoring Org:
National Science Foundation
More Like this
  1. Dielectric elastomer actuators (DEAs) are soft, electrically powered actuators that have no discrete moving parts, yet can exhibit large strains (10%–50%) and moderate stress (∼100 kPa). This Tutorial describes the physical basis underlying the operation of DEA's, starting with a simple linear analysis, followed by nonlinear Newtonian and energy approaches necessary to describe large strain characteristics of actuators. These lead to theoretical limits on actuation strains and useful non-dimensional parameters, such as the normalized electric breakdown field. The analyses guide the selection of elastomer materials and compliant electrodes for DEAs. As DEAs operate at high electric fields, this Tutorial describes some of the factors affecting the Weibull distribution of dielectric breakdown, geometrical effects, distinguishing between permanent and “soft” breakdown, as well as “self-clearing” and its relation to proof testing to increase device reliability. New evidence for molecular alignment under an electric field is also presented. In the discussion of compliant electrodes, the rationale for carbon nanotube (CNT) electrodes is presented based on their compliance and ability to maintain their percolative conductivity even when stretched. A procedure for making complaint CNT electrodes is included for those who wish to fabricate their own. Percolative electrodes inevitably give rise to only partial surface coverage and the consequences on actuator performance are introduced. Developments in actuator geometry, including recent 3D printing, are described. The physical basis of versatile and reconfigurable shape-changing actuators, together with their analysis, is presented and illustrated with examples. Finally, prospects for achieving even higher performance DEAs will be discussed.

     
    more » « less
  2. Recent developments in micro-scale additive manufacturing (AM) have opened new possibilities in state-of-the-art areas, including microelectromechanical systems (MEMS) with intrinsically soft and compliant components. While fabrication with soft materials further complicates micro-scale AM, a soft photocurable polydimethylsiloxane (PDMS) resin, IP-PDMS, has recently entered the market of two-photon polymerization (2PP) AM. To facilitate the development of microdevices with soft components through the application of 2PP technique and IP-PDMS material, this research paper presents a comprehensive material characterization of IP-PDMS. The significance of this study lies in the scarcity of existing research on this material and the thorough investigation of its properties, many of which are reported here for the first time. Particularly, for uncured IP-PDMS resin, this work evaluates a surface tension of 26.7 ± 4.2 mN/m, a contact angle with glass of 11.5 ± 0.6°, spin-coating behavior, a transmittance of more than 90% above 440 nm wavelength, and FTIR with all the properties reported for the first time. For cured IP-PDMS, novel characterizations include a small mechanical creep, a velocity-dependent friction coefficient with glass, a typical dielectric permittivity value of 2.63 ± 0.02, a high dielectric/breakdown strength for 3D-printed elastomers of up to 73.3 ± 13.3 V/µm and typical values for a spin coated elastomer of 85.7 ± 12.4 V/µm, while the measured contact angle with water of 103.7 ± 0.5°, Young’s modulus of 5.96 ± 0.2 MPa, and viscoelastic DMA mechanical characterization are compared with the previously reported values. Friction, permittivity, contact angle with water, and some of the breakdown strength measurements were performed with spin-coated cured IP-PDMS samples. Based on the performed characterization, IP-PDMS shows itself to be a promising material for micro-scale soft MEMS, including microfluidics, storage devices, and micro-scale smart material technologies.

     
    more » « less
  3. Dielectric elastomers (DEs) are electro-active polymers that deform and change their shape when an electric field is applied across them. They are used as soft actuators since they are flexible, resilient, lightweight, and durable. Many models have been proposed to describe and capture the behavior of these actuators such as circuit representation, lumped parameter modeling, and physics-based modeling. In this paper, a hybrid between the physics and lumped parameter model is presented which is used to control the actuator. The focus of this paper is on a tubular dielectric elastomer actuator (DEA). The model proposed is validated with experimental data to evaluate its approximation to the physical actuator. The physics model offers the ability to describe how the material properties and actuator's geometry affect the dynamics and behavior of the actuator under different states. The lumped parameter model accounts for physical quantities that may not be fully expressed when formulating the physics-based equations. The discussed model performance is found to have an error less than 10% for the sinusoidal signals discussed. 
    more » « less
  4. Abstract

    This work reports a three-dimensional polymer interdigitated pillar electrostatic actuator that can produce force densities 5–10× higher than those of biological muscles. The theory of operation, scaling, and stability is investigated using analytical and FEM models. The actuator consists of two high-density arrays of interdigitated pillars that work against a restoring force generated by an integrated flexure spring. The actuator architecture enables linear actuation with higher displacements and pull-in free actuation to prevent the in-use stiction associated with other electrostatic actuators. The pillars and springs are 3D printed together in the same structure. The pillars are coated with a gold–palladium alloy layer to form conductive electrodes. The space between the pillars is filled with liquid dielectrics for higher breakdown voltages and larger electrostatic forces due to the increase in the dielectric constant. We demonstrated a prototype actuator that produced a maximum work density of 54.6 µJ/cc and an electrical-to-mechanical energy coupling factor of 32% when actuated at 4000 V. The device was operated for more than 100,000 cycles with no degradation in displacements. The flexible polymer body was robust, allowing the actuator to operate even after high mechanical force impact, which was demonstrated by operation after drop tests. As it is scaled further, the reported actuator will enable soft and flexible muscle-like actuators that can be stacked in series and parallel to scale the resulting forces. This work paves the way for high-energy density actuators for microrobotic applications.

     
    more » « less
  5. Abstract

    Multilayer dielectric elastomer actuators  have a wide range of potential applications, but their development and commercial implementation have been hindered by existing manufacturing processes. Existing processes are low‐throughput, limited in area, and/or can only process a narrow range of elastomers. This study presents a novel fabrication paradigm that overcomes these challenges: instead of sequentially patterning electrodes directly onto successive elastomer layers, electrode stamps are patterned onto a carrier film in an independent batch‐spray process and the electrodes are then stamp‐transferred onto each elastomer layer. By modularizing the production and assembly of electrodes, a laboratory‐scale implementation of the process achieves a throughput of 15 layers h−1, a maximum electrode size of 300×300 mm, and tuning‐free compatibility with a wide range of elastomers. The batch‐spraying paradigm also provides the unique capability to evaluate and modify electrodes before they are assembled into a multilayer; a method of mechanically treating the electrodes is employed to increase the breakdown strength of Elastosil P7670 devices from 15.7 to 33.5 V µm−1. The electrodes are conductive up to a strain of more than 200% and add negligible stiffness to the multilayer structure. The capabilities of this process to produce useful devices are demonstrated with a large‐area loudspeaker and an actuator with 60 active layers.

     
    more » « less