Dielectric elastomer actuators (DEAs) are soft, electrically powered actuators that have no discrete moving parts, yet can exhibit large strains (10%–50%) and moderate stress (∼100 kPa). This Tutorial describes the physical basis underlying the operation of DEA's, starting with a simple linear analysis, followed by nonlinear Newtonian and energy approaches necessary to describe large strain characteristics of actuators. These lead to theoretical limits on actuation strains and useful non-dimensional parameters, such as the normalized electric breakdown field. The analyses guide the selection of elastomer materials and compliant electrodes for DEAs. As DEAs operate at high electric fields, this Tutorial describes some of the factors affecting the Weibull distribution of dielectric breakdown, geometrical effects, distinguishing between permanent and “soft” breakdown, as well as “self-clearing” and its relation to proof testing to increase device reliability. New evidence for molecular alignment under an electric field is also presented. In the discussion of compliant electrodes, the rationale for carbon nanotube (CNT) electrodes is presented based on their compliance and ability to maintain their percolative conductivity even when stretched. A procedure for making complaint CNT electrodes is included for those who wish to fabricate their own. Percolative electrodes inevitably give rise to only partial surface coverage and the consequences on actuator performance are introduced. Developments in actuator geometry, including recent 3D printing, are described. The physical basis of versatile and reconfigurable shape-changing actuators, together with their analysis, is presented and illustrated with examples. Finally, prospects for achieving even higher performance DEAs will be discussed. 
                        more » 
                        « less   
                    
                            
                            Electrode filling using capillary action of 3D printed elastomer microchannels
                        
                    
    
            Soft polymer actuators are in increasing demand due to their more fluid like motion and flexibility when actuated than compared with rigid actuators, which makes them valuable in diverse engineering applications. One of the main types of soft polymer actuators is the dielectric elastomer actuator, whose working principle is to apply a voltage potential difference between electrodes to reduce the thickness of the elastomeric material while expanding its area. This paper looks at manufacturing a micro soft polymer dielectric elastomer actuator utilizing two-photon polymerization 3D printing. The actuator contains micro channels that are filled with an electrode by using capillary action. A complex helical geometry is designed, printed, and tested for electrode filling capabilities. Quite a few obstacles are described in this paper including the use of a newly released two-photon polymerization resin which has limited supporting resources, as well as the complex helical geometry having a large compliance that vastly complicates its fabrication, post-processing, handling, electrode filling, electrode integration, and actuation testing. However, these challenges are overcome by using the standard printing recipes currently available for the resins, adding electrode isolation layers, and printing thicker elastomer zones for more structural support. The results found solidify the approach of filling microchannels with electrodes through capillary action and lead to further the focus and creation of multi-functional micro soft actuators. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10476245
- Editor(s):
- Madden, John D.; Anderson, Iain A.; Shea, Herbert R.
- Publisher / Repository:
- SPIE
- Date Published:
- ISBN:
- 9781510660717
- Page Range / eLocation ID:
- 18
- Format(s):
- Medium: X
- Location:
- Long Beach, United States
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Dielectric elastomers (DEs) are electro-active polymers that deform and change their shape when an electric field is applied across them. They are used as soft actuators since they are flexible, resilient, lightweight, and durable. Many models have been proposed to describe and capture the behavior of these actuators such as circuit representation, lumped parameter modeling, and physics-based modeling. In this paper, a hybrid between the physics and lumped parameter model is presented which is used to control the actuator. The focus of this paper is on a tubular dielectric elastomer actuator (DEA). The model proposed is validated with experimental data to evaluate its approximation to the physical actuator. The physics model offers the ability to describe how the material properties and actuator's geometry affect the dynamics and behavior of the actuator under different states. The lumped parameter model accounts for physical quantities that may not be fully expressed when formulating the physics-based equations. The discussed model performance is found to have an error less than 10% for the sinusoidal signals discussed.more » « less
- 
            Abstract Dielectric elastomer actuators (DEAs) exhibit fast actuation and high efficiencies, enabling applications in optics, wearable haptics, and insect-scale robotics. However, the non-uniformity and high sheet resistance of traditional soft electrodes based on nanomaterials limit the performance and operating frequency of the devices. In this work, we computationally investigate electrodes composed of arrays of stiff fiber electrodes. Aligning the fibers along one direction creates an electrode layer that exhibits zero stiffness in one direction and is predicted to possess high and uniform sheet resistance. A comprehensive parameter study of the fiber density and dielectric thickness reveals that the fiber density primary determines the electric field localization while the dielectric thickness primarily determines the unit cell stiffness. These trends identify an optimal condition for the actuation performance of the aligned electrode DEAs. This work demonstrates that deterministically designed electrodes composed of stiff materials could provide a new paradigm with the potential to surpass the performance of traditional soft planar electrodes.more » « less
- 
            Dielectric electroactive polymers are materials capable of mechanically adjusting their volume in response to an electrical stimulus. However, currently these materials require multi-step manufacturing processes which are not additive. This paper presents a novel 3D printed flexible dielectric material and characterizes its use as a dielectric electroactive polymer (DEAP) actuator. The 3D printed material was characterized electrically and mechanically and its functionality as a dielectric electroactive polymer actuator was demonstrated. The flexible 3-D printed material demonstrated a high dielectric constant and ideal stress-strain performance in tensile testing making the 3-D printed material ideal for use as a DEAP actuator. The tensile stress- strain properties were measured on samples printed under three different conditions (three printing angles 0°, 45° and 90°). The results demonstrated the flexible material presents different responses depending on the printing angle. Based on these results, it was possible to determine that the active structure needs low pre-strain to perform a visible contractive displacement when voltage is applied to the electrodes. The actuator produced an area expansion of 5.48% in response to a 4.3 kV applied voltage, with an initial pre-strain of 63.21% applied to the dielectric material.more » « less
- 
            Insects maintain remarkable agility after incurring severe injuries or wounds. Although robots driven by rigid actuators have demonstrated agile locomotion and manipulation, most of them lack animal-like robustness against unexpected damage. Dielectric elastomer actuators (DEAs) are a class of muscle-like soft transducers that have enabled nimble aerial, terrestrial, and aquatic robotic locomotion comparable to that of rigid actuators. However, unlike muscles, DEAs suffer local dielectric breakdowns that often cause global device failure. These local defects severely limit DEA performance, lifetime, and size scalability. We developed DEAs that can endure more than 100 punctures while maintaining high bandwidth (>400 hertz) and power density (>700 watt per kilogram)—sufficient for supporting energetically expensive locomotion such as flight. We fabricated electroluminescent DEAs for visualizing electrode connectivity under actuator damage. When the DEA suffered severe dielectric breakdowns that caused device failure, we demonstrated a laser-assisted repair method for isolating the critical defects and recovering performance. These results culminate in an aerial robot that can endure critical actuator and wing damage while maintaining similar accuracy in hovering flight. Our work highlights that soft robotic systems can embody animal-like agility and resilience—a critical biomimetic capability for future robots to interact with challenging environments.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    