We use the available transportmeasurements in the literature to develop a dataset for the likely amount of disorder in semiconductor (InAs and InSb) materials which are used in fabricating the superconductor-semiconductor nanowire samples in the experimental search for Majorana zero modes. Using the estimated disorder in direct Majorana simulations, we conclude that the current level of disorder in semiconductor Majorana nanowires is at least an order of magnitude higher than that necessary for the emergence of topological Majorana zero modes. In agreement with existing results, we find that our estimated disorder leads to the occasional emergence of trivial zero modes, which can be post-selected and then further fine-tuned by varying system parameters (e.g., tunnel barrier), leading to trivial zero-bias conductance peaks in tunneling spectroscopy with ∼2e2/h magnitude. Most calculated tunnel spectra in these disordered systems, however, manifest essentially no significant features, which is also consistent with the current experimental status, where zero-bias peaks are found only occasionally in some samples under careful fine-tuning.
more »
« less
Delocalized states in three-terminal superconductor-semiconductor nanowire devices
We fabricate three-terminal hybrid devices consisting of a semiconductor nanowire segment proximitized by a grounded superconductor and having tunnel probe contacts on both sides. By performing simultaneous tunneling measurements, we identify delocalized states, which can be observed from both ends, and states localized near one of the tunnel barriers. The delocalized states can be traced from zero magnetic field to fields beyond 0.5 T. Within the regime that supports delocalized states, we search for correlated low-energy features consistent with the presence of Majorana zero modes. While both sides of the device exhibit ubiquitous low-energy features at high fields, no correlation is inferred. Simulations using a one-dimensional effective model suggest that the delocalized states, which extend throughout the whole system, have large characteristic wave vectors, while the lower momentum states expected to give rise to Majorana physics are localized by disorder. To avoid such localization and realize Majorana zero modes, disorder needs to be reduced significantly. We propose a method for estimating the disorder strength based on analyzing the level spacing between delocalized states.
more »
« less
- Award ID(s):
- 2014156
- PAR ID:
- 10476258
- Publisher / Repository:
- SciPost Foundation
- Date Published:
- Journal Name:
- SciPost Physics
- Volume:
- 15
- Issue:
- 1
- ISSN:
- 2542-4653
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We consider theoretically the physics of bulk topological superconductivity accompanied by boundary non- Abelian Majorana zero modes in semiconductor-superconductor (SM-SC) hybrid systems consisting of finite wires in the presence of correlated disorder arising from random charged impurities. We find the system to manifest a highly complex behavior due to the subtle interplay between finite wire length and finite disorder, leading to copious low-energy in-gap states throughout the wire and considerably complicating the interpretation of tunneling spectroscopic transport measurements used extensively to search forMajorana modes. The presence of disorder-induced low-energy states may lead to the nonexistence of end Majorana zero modes even when tunneling spectroscopy manifests zero-bias conductance peaks in local tunneling and signatures of bulk gap closing/reopening in the nonlocal transport. In short wires within the intermediate disorder regime, apparent topology may manifest in small ranges (“patches”) of parameter values, which may or may not survive the longwire limit depending on various details. Because of the dominance of disorder-induced in-gap states, the system may even occasionally have an appropriate topological invariant without manifesting isolated end Majorana zero modes. We discuss our findings in the context of a recent breakthrough experiment from Microsoft reporting the simultaneous observations of zero-bias conductance peaks in local tunneling and gap opening in nonlocal transport within small patches of parameter space. Based on our analysis, we believe that the disorder strength to SC-gap ratio must decrease further for the definitive realization of non-Abelian Majorana zero modes in SM-SC devices.more » « less
-
We study Andreev bound states in the presence of a magnetic moment in a ferromagnetic topological insulator in superconductor/magnetic topological insulator/superconductor Josephson junctions. We analytically find zero energy states for out-of-plane and in-plane directions of the magnetic moment. In the case of the out-of-plane magnetic moment, the energy is independent of the scattering angle. If both magnetic and nonmagnetic scattering mechanisms are considered, the zero energy state requires the scattering angle to the electrode to be zero as in the case of Majorana fermions. In the presence of an in-plane magnetic moment, the energy band always exhibits a nonvanishing gap if the magnetic moment has a nonzero component, i.e., there are no zero energy states. Here we assume that the electrons tunnel in the direction. If the magnetic moment is aligned with the tunneling direction, the zero energy states always exist and are independent of the scattering angle. Contrary to the Majorana fermion case, the phase shift between two superconductor electrodes is not. This phase difference depends on the system parameters such as the Fermi velocity, the barrier potential magnitude, the exchange coupling between localized and delocalized electrons, and the component of the magnetic moment. We find an anomalous Josepheson current when the magnetic moment has a component in the direction, where the current is nonzero despite. This is due to the violation of time reversal and chiral symmetries in the Josepheson junction. This leads to the observation of the Josephson Diode effect as well. For large scattering magnitudes, we find that the transmission coefficient approaches one at larger barrier magnitudes. This is the main reason why in superconductor/magnetic topological insulator/superconductor Josephson junctions critical current is much higher than in superconductor/normal metal/superconductor junctions. This effect is similar in origin to Klein Tunneling for relativistic Dirac electrons. In the case of nonmagnetic and out-of-plane magnetic scatterings, the current vanishes when the barrier amplitudes are approximately equal and large. This effect cannot be explained by the relativistic nature of the Dirac equation and is specific to the model. We also study temperature dependencies for in- and out-of-plane magnetic moments. We find that current at high temperatures is significantly smaller than at low temperatures. The current approaches a constant value at low temperatures, at approximately. This value depends on the other system parameters. The existence of new zero energy states in magnetic topological insulators in superconductor/magnetic topological insulator/superconductor Josephson junctions opens new opportunities in quantum computing because of the presence of the additional symmetry with respect to the scattering angle.more » « less
-
We address an outstanding problem that represents a critical roadblock in the development of the Majorana-based topological qubit using semiconductor-superconductor hybrid structures: the quantitative characterization of disorder effects generated by the unintentional presence of charge impurities within the hybrid device. Given that disorder can have far-reaching consequences for the Majorana physics but is intrinsically difficult to probe experimentally in a hybrid structure, providing a quantitative theoretical description of disorder effects becomes essential. To accomplish this task, we develop a microscopic theory that (i) provides a quantitative characterization of the effective potential generated by a charge impurity embedded inside a semiconductor wire proximity coupled to a superconductor layer by solving selfconsistently the associated three-dimensional Schrödinger-Poisson problem, (ii) describes the low-energy physics of the hybrid structure in the presence of s-wave superconductivity, spin-orbit coupling, Zeeman splitting, and disorder arising from multiple charge impurities by using the results of (i) within a standard free-fermion approach, and (iii) links the microscopic results to experimentally observable features by generating tunneling differential-conductance maps as a function of the control parameters (e.g., Zeeman field and chemical potential). We find that charge impurities lead to serious complications regarding the realization and observation of Majorana zero modes, which have direct implications for the development of Majorana-based qubits. More importantly, our work provides a clear direction regarding what needs to be done for progress in the field, including specific materials-quality and semiconductor-purity targets that must be achieved to create a topological qubit.more » « less
-
We discuss the feasibility of measurement-based braiding in semiconductor-superconductor (SM-SC) heterostructures in the so-called quasi-Majorana regime—the topologically-trivial regime characterized by robust zero-bias conductance peaks (ZBCPs) that are due to partially-separated Andreev bound states (ps-ABSs). These low energy ABSs consist of component Majorana bound states (also called quasi-Majorana modes) that are spatially separated by a length scale smaller than the length of the system, in contrast with the Majorana zero modes (MZMs) emerging in the topological regime, which are separated by the length of the wire. In the quasi-Majorana regime, the ZBCPs appear to be robust to various perturbations as long as the energy splitting of the ps-ABS is less than the typical width Ew of the low-energy conductance peaks (Ew ∼ 10–20 μeV). However, the feasibility of measurement-based braiding depends on a different, much smaller, energy scale Em ∼ 0.1 μeV. This energy scale is given by the typical fermion parity-dependent ground state energy shift due to virtual electron transfer between the SM-SC system and a quantum dot used for parity measurements. In this paper we show that it is possible to prepare the SM-SC system in the quasi-Majorana regime with energy splittings below the Em threshold, so that measurement-based braiding is possible in principle. However, despite the apparent robustness of the corresponding ZBCPs, ps-ABSs are in reality topologically unprotected. Starting with ps-ABSs with energy below Em, we identify the maximum amplitudes of different types of (local) perturbations that are consistent with perturbation-induced energy splittings not exceeding the Em limit.We argue that measurements generating perturbations larger than the threshold amplitudes appropriate for Em cannot realize measurement-based braiding in SM-SC heterostructures in the quasi-Majorana regime. We find that, if possible at all, quantum computation using measurement-based braiding in the quasi-Majorana regime would be plagued with errors introduced by the measurement processes themselves, while such errors are significantly less likely in a scheme involving topological MZMs.more » « less
An official website of the United States government

