skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Model validation and selection in metabolic flux analysis and flux balance analysis
Abstract 13C‐Metabolic Flux Analysis (13C‐MFA) and Flux Balance Analysis (FBA) are widely used to investigate the operation of biochemical networks in both biological and biotechnological research. Both methods use metabolic reaction network models of metabolism operating at steady state so that reaction rates (fluxes) and the levels of metabolic intermediates are constrained to be invariant. They provide estimated (MFA) or predicted (FBA) values of the fluxes through the network in vivo, which cannot be measured directly. These fluxes can shed light on basic biology and have been successfully used to inform metabolic engineering strategies. Several approaches have been taken to test the reliability of estimates and predictions from constraint‐based methods and to compare alternative model architectures. Despite advances in other areas of the statistical evaluation of metabolic models, such as the quantification of flux estimate uncertainty, validation and model selection methods have been underappreciated and underexplored. We review the history and state‐of‐the‐art in constraint‐based metabolic model validation and model selection. Applications and limitations of the χ2‐test of goodness‐of‐fit, the most widely used quantitative validation and selection approach in 13C‐MFA, are discussed, and complementary and alternative forms of validation and selection are proposed. A combined model validation and selection framework for 13C‐MFA incorporating metabolite pool size information that leverages new developments in the field is presented and advocated for. Finally, we discuss how adopting robust validation and selection procedures can enhance confidence in constraint‐based modeling as a whole and ultimately facilitate more widespread use of FBA in biotechnology.  more » « less
Award ID(s):
1828149
PAR ID:
10476283
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Biotechnology Progress
Volume:
40
Issue:
1
ISSN:
8756-7938
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Birol, Inanc (Ed.)
    Abstract Motivation The accurate prediction of complex phenotypes such as metabolic fluxes in living systems is a grand challenge for systems biology and central to efficiently identifying biotechnological interventions that can address pressing industrial needs. The application of gene expression data to improve the accuracy of metabolic flux predictions using mechanistic modeling methods such as flux balance analysis (FBA) has not been previously demonstrated in multi-tissue systems, despite their biotechnological importance. We hypothesized that a method for generating metabolic flux predictions informed by relative expression levels between tissues would improve prediction accuracy. Results Relative gene expression levels derived from multiple transcriptomic and proteomic datasets were integrated into FBA predictions of a multi-tissue, diel model of Arabidopsis thaliana’s central metabolism. This integration dramatically improved the agreement of flux predictions with experimentally based flux maps from 13C metabolic flux analysis compared with a standard parsimonious FBA approach. Disagreement between FBA predictions and MFA flux maps was measured using weighted averaged percent error values, and for parsimonious FBA this was169%–180% for high light conditions and 94%–103% for low light conditions, depending on the gene expression dataset used. This fell to 10%-13% and 9%-11% upon incorporating expression data into the modeling process, which also substantially altered the predicted carbon and energy economy of the plant. Availability and implementation Code and data generated as part of this study are available from https://github.com/Gibberella/ArabidopsisGeneExpressionWeights. 
    more » « less
  2. Abstract The modeling of rates of biochemical reactions—fluxes—in metabolic networks is widely used for both basic biological research and biotechnological applications. A number of different modeling methods have been developed to estimate and predict fluxes, including kinetic and constraint‐based (Metabolic Flux Analysis and flux balance analysis) approaches. Although different resources exist for teaching these methods individually, to‐date no resources have been developed to teach these approaches in an integrative way that equips learners with an understanding of each modeling paradigm, how they relate to one another, and the information that can be gleaned from each. We have developed a series of modeling simulations in Python to teach kinetic modeling, metabolic control analysis, 13C‐metabolic flux analysis, and flux balance analysis. These simulations are presented in a series of interactive notebooks with guided lesson plans and associated lecture notes. Learners assimilate key principles using models of simple metabolic networks by running simulations, generating and using data, and making and validating predictions about the effects of modifying model parameters. We used these simulations as the hands‐on computer laboratory component of a four‐day metabolic modeling workshop and participant survey results showed improvements in learners' self‐assessed competence and confidence in understanding and applying metabolic modeling techniques after having attended the workshop. The resources provided can be incorporated in their entirety or individually into courses and workshops on bioengineering and metabolic modeling at the undergraduate, graduate, or postgraduate level. 
    more » « less
  3. Summary Metabolic flux analysis (MFA) is a valuable tool for quantifying cellular phenotypes and to guide plant metabolic engineering. By introducing stable isotopic tracers and employing mathematical models, MFA can quantify the rates of metabolic reactions through biochemical pathways. Recent applications of isotopically nonstationary MFA (INST‐MFA) to plants have elucidated nonintuitive metabolism in leaves under optimal and stress conditions, described coupled fluxes for fast‐growing algae, and produced a synergistic multi‐organ flux map that is a first in MFA for any biological system. These insights could not be elucidated through other approaches and show the potential of INST‐MFA to correct an oversimplified understanding of plant metabolism. 
    more » « less
  4. Motivation: Systems biology models are typically simulated using a single formalism such as ordinary differential equations (ODE) or stochastic methods. However, more complex models require the coupling of multiple formalisms since different biological concepts are better described using different methods, e.g., stationary metabolism is often modeled using flux-balance analysis (FBA) whereas dynamic changes of model components are better described via ODEs. The coupling of FBA and ODE frameworks results in dynamic FBA models. A major challenge is how to describe such hybrid models coupling multiple frameworks in a standardized way, so that they can be exchanged between tools and simulated consistently and in a reproducible manner. Results: This paper presents a scheme and implementation for encoding dynamic FBA models in the Systems Biology Markup Language (SBML), thereby allowing to exchange multi-framework computational models between software tools. The paper shows the feasibility of the approach using various example models and demonstrates that different tools are able to simulate the hybrid models and agree on the results. As part of this work, two independent implementations of a multi-framework simulation method for dynamic FBA have been developed supporting such models: iBioSim and sbmlutils. Availability: All materials and models are available from https://github.com/matthiaskoenig/dfba. The tools used in this project are freely available: iBioSim at http://www.async.ece.utah.edu/ibiosim and sbmlutils at https://github.com/matthiaskoenig/sbmlutils/. 
    more » « less
  5. Caramia, Massimiliano; Werner, Frank (Ed.)
    Flux Balance Analysis (FBA) is a constraint-based method that is commonly used to guide metabolites through restricting pathways that often involve conditions such as anaplerotic cycles like Calvin, reversible or irreversible reactions, and nodes where metabolic pathways branch. The method can identify the best conditions for one course but fails when dealing with the pathways of multiple metabolites of interest. Recent studies on metabolism consider it more natural to optimize several metabolites simultaneously rather than just one; moreover, they point out the use of metaheuristics as an attractive alternative that extends FBA to tackle multiple objectives. However, the literature also warns that the use of such techniques must not be wild. Instead, it must be subject to careful fine-tuning and selection processes to achieve the desired results. This work analyses the impact on the quality of the pathways built using the NSGAII and MOEA/D algorithms and several novel optimization models; it conducts a study on two case studies, the pigment biosynthesis and the node in glutamate metabolism of the microalgae Chlorella vulgaris, under three culture conditions (autotrophic, heterotrophic, and mixotrophic) while optimizing for three metabolic intermediaries as independent objective functions simultaneously. The results show varying performances between NSGAII and MOEA/D, demonstrating that the selection of an optimization model can greatly affect predicted phenotypes. 
    more » « less