skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Pitfalls in Metaheuristics Solving Stoichiometric-Based Optimization Models for Metabolic Networks
Flux Balance Analysis (FBA) is a constraint-based method that is commonly used to guide metabolites through restricting pathways that often involve conditions such as anaplerotic cycles like Calvin, reversible or irreversible reactions, and nodes where metabolic pathways branch. The method can identify the best conditions for one course but fails when dealing with the pathways of multiple metabolites of interest. Recent studies on metabolism consider it more natural to optimize several metabolites simultaneously rather than just one; moreover, they point out the use of metaheuristics as an attractive alternative that extends FBA to tackle multiple objectives. However, the literature also warns that the use of such techniques must not be wild. Instead, it must be subject to careful fine-tuning and selection processes to achieve the desired results. This work analyses the impact on the quality of the pathways built using the NSGAII and MOEA/D algorithms and several novel optimization models; it conducts a study on two case studies, the pigment biosynthesis and the node in glutamate metabolism of the microalgae Chlorella vulgaris, under three culture conditions (autotrophic, heterotrophic, and mixotrophic) while optimizing for three metabolic intermediaries as independent objective functions simultaneously. The results show varying performances between NSGAII and MOEA/D, demonstrating that the selection of an optimization model can greatly affect predicted phenotypes.  more » « less
Award ID(s):
2313313
PAR ID:
10533351
Author(s) / Creator(s):
; ; ; ; ;
Corporate Creator(s):
Editor(s):
Caramia, Massimiliano; Werner, Frank
Publisher / Repository:
Algorithms
Date Published:
Journal Name:
Algorithms
Edition / Version:
1
Volume:
17
Issue:
8
ISSN:
1999-4893
Page Range / eLocation ID:
336
Subject(s) / Keyword(s):
cell metabolism FBA multi-objective optimization NSGAII MOEA/D
Format(s):
Medium: X Size: 2MB Other: xls
Size(s):
2MB
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract 13C‐Metabolic Flux Analysis (13C‐MFA) and Flux Balance Analysis (FBA) are widely used to investigate the operation of biochemical networks in both biological and biotechnological research. Both methods use metabolic reaction network models of metabolism operating at steady state so that reaction rates (fluxes) and the levels of metabolic intermediates are constrained to be invariant. They provide estimated (MFA) or predicted (FBA) values of the fluxes through the network in vivo, which cannot be measured directly. These fluxes can shed light on basic biology and have been successfully used to inform metabolic engineering strategies. Several approaches have been taken to test the reliability of estimates and predictions from constraint‐based methods and to compare alternative model architectures. Despite advances in other areas of the statistical evaluation of metabolic models, such as the quantification of flux estimate uncertainty, validation and model selection methods have been underappreciated and underexplored. We review the history and state‐of‐the‐art in constraint‐based metabolic model validation and model selection. Applications and limitations of the χ2‐test of goodness‐of‐fit, the most widely used quantitative validation and selection approach in 13C‐MFA, are discussed, and complementary and alternative forms of validation and selection are proposed. A combined model validation and selection framework for 13C‐MFA incorporating metabolite pool size information that leverages new developments in the field is presented and advocated for. Finally, we discuss how adopting robust validation and selection procedures can enhance confidence in constraint‐based modeling as a whole and ultimately facilitate more widespread use of FBA in biotechnology. 
    more » « less
  2. Birol, Inanc (Ed.)
    Abstract Motivation The accurate prediction of complex phenotypes such as metabolic fluxes in living systems is a grand challenge for systems biology and central to efficiently identifying biotechnological interventions that can address pressing industrial needs. The application of gene expression data to improve the accuracy of metabolic flux predictions using mechanistic modeling methods such as flux balance analysis (FBA) has not been previously demonstrated in multi-tissue systems, despite their biotechnological importance. We hypothesized that a method for generating metabolic flux predictions informed by relative expression levels between tissues would improve prediction accuracy. Results Relative gene expression levels derived from multiple transcriptomic and proteomic datasets were integrated into FBA predictions of a multi-tissue, diel model of Arabidopsis thaliana’s central metabolism. This integration dramatically improved the agreement of flux predictions with experimentally based flux maps from 13C metabolic flux analysis compared with a standard parsimonious FBA approach. Disagreement between FBA predictions and MFA flux maps was measured using weighted averaged percent error values, and for parsimonious FBA this was169%–180% for high light conditions and 94%–103% for low light conditions, depending on the gene expression dataset used. This fell to 10%-13% and 9%-11% upon incorporating expression data into the modeling process, which also substantially altered the predicted carbon and energy economy of the plant. Availability and implementation Code and data generated as part of this study are available from https://github.com/Gibberella/ArabidopsisGeneExpressionWeights. 
    more » « less
  3. Goldman, Gustavo H. (Ed.)
    ABSTRACT Fungal secondary metabolites are widely used as therapeutics and are vital components of drug discovery programs. A major challenge hindering discovery of novel secondary metabolites is that the underlying pathways involved in their biosynthesis are transcriptionally silent under typical laboratory growth conditions, making it difficult to identify the transcriptional networks that they are embedded in. Furthermore, while the genes participating in secondary metabolic pathways are typically found in contiguous clusters on the genome, known as biosynthetic gene clusters (BGCs), this is not always the case, especially for global and pathway-specific regulators of pathways’ activities. To address these challenges, we used 283 genome-wide gene expression data sets of the ascomycete cell factory Aspergillus niger generated during growth under 155 different conditions to construct two gene coexpression networks based on Spearman’s correlation coefficients (SCCs) and on mutual rank-transformed Pearson’s correlation coefficients (MR-PCCs). By mining these networks, we predicted six transcription factors, named MjkA to MjkF, to regulate secondary metabolism in A. niger . Overexpression of each transcription factor using the Tet-On cassette modulated the production of multiple secondary metabolites. We found that the SCC and MR-PCC approaches complemented each other, enabling the delineation of putative global (SCC) and pathway-specific (MR-PCC) transcription factors. These results highlight the potential of coexpression network approaches to identify and activate fungal secondary metabolic pathways and their products. More broadly, we argue that drug discovery programs in fungi should move beyond the BGC paradigm and focus on understanding the global regulatory networks in which secondary metabolic pathways are embedded. IMPORTANCE There is an urgent need for novel bioactive molecules in both agriculture and medicine. The genomes of fungi are thought to contain vast numbers of metabolic pathways involved in the biosynthesis of secondary metabolites with diverse bioactivities. Because these metabolites are biosynthesized only under specific conditions, the vast majority of the fungal pharmacopeia awaits discovery. To discover the genetic networks that regulate the activity of secondary metabolites, we examined the genome-wide profiles of gene activity of the cell factory Aspergillus niger across hundreds of conditions. By constructing global networks that link genes with similar activities across conditions, we identified six putative global and pathway-specific regulators of secondary metabolite biosynthesis. Our study shows that elucidating the behavior of the genetic networks of fungi under diverse conditions harbors enormous promise for understanding fungal secondary metabolism, which ultimately may lead to novel drug candidates. 
    more » « less
  4. Abstract Recent technical and theoretical advances have generated an explosion in the identification of specialized metabolite pathways. In comparison, our understanding of how these pathways are regulated is relatively lagging. This and the relatively young age of specialized metabolite pathways has partly contributed to a default and common paradigm whereby specialized metabolite regulation is theorized as relatively simple with a few key transcription factors and the compounds are non-regulatory end-products. In contrast, studies into model specialized metabolites, such as glucosinolates, are beginning to identify a new understanding whereby specialized metabolites are highly integrated into the plants’ core metabolic, physiological, and developmental pathways. This model includes a greatly extended compendium of transcription factors controlling the pathway, key transcription factors that co-evolve with the pathway and simultaneously control core metabolic and developmental components, and finally the compounds themselves evolve regulatory connections to integrate into the plants signaling machinery. In this review, these concepts are illustrated using studies in the glucosinolate pathway within the Brassicales. This suggests that the broader community needs to reconsider how they do or do not integrate specialized metabolism into the regulatory network of their study species. 
    more » « less
  5. Understanding cellular engagement with its environment is essential to control and monitor metabolism. Molecular Communication theory (MC) offers a computational means to identify environmental perturbations that direct or signify cellular behaviors by quantifying the information about a molecular environment that is transmitted through a metabolic system. We developed an model that integrates conventional flux balance analysis metabolic modeling (FBA) and MC to mechanistically expand the scope of MC, and thereby uniquely blends mechanistic biology and information theory to understand how substrate consumption is captured reaction activity, metabolite excretion, and biomass growth. This is enabled by defining several channels through which environmental information transmits in a metabolic network. The information flow in bits that is calculated through this workflow further determines the maximal metabolic effect of environmental perturbations on cellular metabolism and behaviors, since FBA simulates maximal efficiency of the metabolic system. We exemplify this method on two intestinal symbionts – Bacteroides thetaiotaomicron and Methanobrevibacter smithii – and visually consolidated the results into constellation diagrams that facilitate interpretation of information flow from given environments and thereby cultivate the design of controllable biological systems. The unique confluence of metabolic modeling and information theory in this model advances basic understanding of cellular metabolism and has applied value for the Internet of Bio-Nano Things, synthetic biology, microbial ecology, and autonomous laboratories. 
    more » « less