skip to main content


This content will become publicly available on September 11, 2024

Title: Synthesis of Clean Hydrogen Gas from Waste Plastic at Zero Net Cost
Abstract

Hydrogen gas (H2) is the primary storable fuel for pollution‐free energy production, with over 90 million tonnes used globally per year. More than 95% of H2is synthesized through metal‐catalyzed steam methane reforming that produces 11 tonnes of carbon dioxide (CO2) per tonne H2. “Green H2” from water electrolysis using renewable energy evolves no CO2, but costs 2–3× more, making it presently economically unviable. Here catalyst‐free conversion of waste plastic into clean H2along with high purity graphene is reported. The scalable procedure evolves no CO2when deconstructing polyolefins and produces H2in purities up to 94% at high mass yields. The sale of graphene byproduct at just 5% of its current value yields H2production at a negative cost. Life‐cycle assessment demonstrates a 39–84% reduction in emissions compared to other H2production methods, suggesting the flash H2process to be an economically viable, clean H2production route.

 
more » « less
NSF-PAR ID:
10476304
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials
Volume:
35
Issue:
48
ISSN:
0935-9648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Bioenergy with carbon capture and geological storage (BECCS) is considered one of the top options for both offsetting CO2emissions and removing atmospheric CO2. BECCS requires using limited land resources efficiently while ensuring minimal adverse impacts on the delicate food‐energy‐water nexus. Perennial C4 biomass crops are productive on marginal land under low‐input conditions avoiding conflict with food and feed crops. The eastern half of the contiguous U.S. contains a large amount of marginal land, which is not economically viable for food production and liable to wind and water erosion under annual cultivation. However, this land is suitable for geological CO2storage and perennial crop growth. Given the climate variation across the region, three perennials are major contenders for planting. The yield potential and stability of Miscanthus, switchgrass, and energycane across the region were compared to select which would perform best under the recent (2000–2014) and future (2036–2050) climates. Miscanthus performed best in the Midwest, switchgrass in the Northeast and energycane in the Southeast. On average, Miscanthus yield decreased from present 19.1 t/ha to future 16.8 t/ha; switchgrass yield from 3.5 to 2.4 t/ha; and energycane yield increased from 14 to 15 t/ha. Future yield stability decreased in the region with higher predicted drought stress. Combined, these crops could produce 0.6–0.62 billion tonnes biomass per year for the present and future. Using the biomass for power generation with CCS would capture 703–726 million tonnes of atmospheric CO2per year, which would offset about 11% of current total U.S. emission. Further, this biomass approximates the net primary CO2productivity of two times the current baseline productivity of existing vegetation, suggesting a huge potential for BECCS. Beyond BECCS, C4 perennial grasses could also increase soil carbon and provide biomass for emerging industries developing replacements for non‐renewable products including plastics and building materials.

     
    more » « less
  2. Abstract

    Greenhouse vegetable production plays a vital role in providing year‐round fresh vegetables to global markets, achieving higher yields, and using less water than open‐field systems, but at the expense of increased energy demand. This study examines the life cycle environmental and economic impacts of integrating semitransparent organic photovoltaics (OPVs) into greenhouse designs. We employ life cycle assessment to analyze six environmental impacts associated with producing greenhouse‐grown tomatoes in a Solar PoweRed INtegrated Greenhouse (SPRING) compared to conventional greenhouses with and without an adjacent solar photovoltaic array, across three distinct locations. The SPRING design produces significant reductions in environmental impacts, particularly in regions with high solar insolation and electricity‐intensive energy demands. For example, in Arizona, global warming potential values for a conventional, adjacent PV and SPRING greenhouse are found to be 3.71, 2.38, and 2.36 kg CO2eq/kg tomato, respectively. Compared to a conventional greenhouse, the SPRING design may increase life cycle environmental burdens in colder regions because the shading effect of OPV increases heating demands. Our analysis shows that SPRING designs must maintain crop yields at levels similar to conventional greenhouses in order to be economically competitive. Assuming consistent crop yields, uncertainty analysis shows average net present cost of production across Arizona to be $3.43, $3.38, and $3.64 per kg of tomato for the conventional, adjacent PV and SPRING system, respectively.

     
    more » « less
  3. Abstract

    Without new innovations, present rates of increase in yields of food crops globally are inadequate to meet the projected rising food demand for 2050 and beyond. A prevailing response of crops to rising [CO2] is an increase in leaf area. This is especially marked in soybean, the world's fourth largest food crop in terms of seed production, and the most important vegetable protein source. Is this increase in leaf area beneficial, with respect to increasing yield, or is it detrimental? It is shown from theory and experiment using open‐air whole‐season elevation of atmospheric [CO2] that it is detrimental not only under future conditions of elevated [CO2] but also under today's [CO2]. A mechanistic biophysical and biochemical model of canopy carbon exchange and microclimate (MLCan) was parameterized for a modernUSMidwest soybean cultivar. Model simulations showed that soybean crops grown under current and elevated (550 [ppm]) [CO2] overinvest in leaves, and this is predicted to decrease productivity and seed yield 8% and 10%, respectively. This prediction was tested in replicated field trials in which a proportion of emerging leaves was removed prior to expansion, so lowering investment in leaves. The experiment was conducted under open‐air conditions for current and future elevated [CO2] within the Soybean Free Air Concentration Enrichment facility (SoyFACE) in central Illinois. This treatment resulted in a statistically significant 8% yield increase. This is the first direct proof that a modern crop cultivar produces more leaf than is optimal for yield under today's and future [CO2] and that reducing leaf area would give higher yields. Breeding or bioengineering for lower leaf area could, therefore, contribute very significantly to meeting future demand for staple food crops given that an 8% yield increase across theUSAalone would amount to 6.5 million metric tons annually.

     
    more » « less
  4. Recognizing the growing interest in the application of organic photovoltaics (OPVs) with greenhouse crop production systems, in this study we used flexible, roll-to-roll printed, semitransparent OPV arrays as a roof shade for a greenhouse hydroponic tomato production system during a spring and summer production season in the arid southwestern U.S. The wavelength-selective OPV arrays were installed in a contiguous area on a section of the greenhouse roof, decreasing the transmittance of all solar radiation wavelengths and photosynthetically active radiation (PAR) wavelengths (400–700 nm) to the OPV-shaded area by approximately 40% and 37%, respectively. Microclimate conditions and tomato crop growth and yield parameters were measured in both the OPV-shaded (‘OPV’) and non-OPV-shaded (‘Control’) sections of the greenhouse. The OPV shade stabilized the canopy temperature during midday periods with the highest solar radiation intensities, performing the function of a conventional shading method. Although delayed fruit development and ripening in the OPV section resulted in lower total yields compared to the Control section (24.6 kg m−2 and 27.7 kg m−2, respectively), after the fourth (of 10 total) harvests, the average weekly yield, fruit number, and fruit mass were not significantly different between the treatment (OPV-shaded) and control group. Light use efficiency (LUE), defined as the ratio of total fruit yield to accumulated PAR received by the plant canopy, was nearly twice as high as the Control section, with 21.4 g of fruit per mole of PAR for plants in the OPV-covered section compared to 10.1 g in the Control section. Overall, this study demonstrated that the use of semi-transparent OPVs as a seasonal shade element for greenhouse production in a high-light region is feasible. However, a higher transmission of PAR and greater OPV device efficiency and durability could make OPV shades more economically viable, providing a desirable solution for co-located greenhouse crop production and renewable energy generation in hot and high-light intensity regions. 
    more » « less
  5. Abstract

    This article addresses the sustainable design of hydrogen (H2) production systems that integrate brown and blue pathways with green hydrogen infrastructure. We develop a systematic framework to simultaneously optimize the process superstructure and operating conditions of steam methane reforming (SMR)‐based hydrogen production systems. A comprehensive superstructure that integrates SMR with multiple carbon dioxide capture technologies, electrolyzers, fuel cells, and working fluids in the organic rankine cycle is proposed under varying operating conditions. A life cycle optimization model is then developed by integrating superstructure optimization, life cycle assessment approach, techno‐economic assessment, and process optimization using extensive process simulation models and formulated as a mixed‐integer nonlinear program. We find that the optimal unit‐levelized cost of hydrogen ranges from $1.49 to $3.18 per kg H2. Moreover, the most environmentally friendly process attains net‐zero life cycle greenhouse gas emissions compared to 10.55 kg CO2‐eq per kg H2for the most economically competitive process design.

     
    more » « less