Abstract Observations of shallow fault creep reveal increasingly complex time‐dependent slip histories that include quasi‐steady creep and triggered as well as spontaneous accelerated slip events. Here we report a recent slow slip event on the southern San Andreas fault triggered by the 2017Mw8.2 Chiapas (Mexico) earthquake that occurred 3,000 km away. Geodetic and geologic observations indicate that surface slip on the order of 10 mm occurred on a 40‐km‐long section of the southern San Andreas fault between the Mecca Hills and Bombay Beach, starting minutes after the Chiapas earthquake and continuing for more than a year. Both the magnitude and the depth extent of creep vary along strike. We derive a high‐resolution map of surface displacements by combining Sentinel‐1 Interferometric Synthetic Aperture Radar acquisitions from different lines of sight. Interferometric Synthetic Aperture Radar‐derived displacements are in good agreement with the creepmeter data and field mapping of surface offsets. Inversions of surface displacement data using dislocation models indicate that the highest amplitudes of surface slip are associated with shallow (<1 km) transient slip. We performed 2‐D simulations of shallow creep on a strike‐slip fault obeying rate‐and‐state friction to constrain frictional properties of the top few kilometers of the upper crust that can produce the observed behavior. 
                        more » 
                        « less   
                    
                            
                            Active Dipping Interface of the Southern San Andreas Fault Revealed by Space Geodetic and Seismic Imaging
                        
                    
    
            Abstract The Southern San Andreas Fault (SSAF) in California is one of the most thoroughly studied faults in the world, but its configuration at seismogenic depths remains enigmatic in the Coachella Valley. We use a combination of space geodetic and seismic observations to demonstrate that the relatively straight southernmost section of the SSAF, between Thousand Palms and Bombay Beach, is dipping to the northeast at 60–80° throughout the upper crust (<10 km), including the shallow aseismic layer. We constrain the fault attitude in the top 2–3 km using inversions of surface displacements associated with shallow creep, and seismic data from a dense nodal array crossing the fault trace near Thousand Palms. The data inversions show that the shallow dipping structure connects with clusters of seismicity at depth, indicating a continuous throughgoing fault surface. The dipping fault geometry has important implications for the long‐term fault slip rate, the intensity of ground shaking during future large earthquakes, and the effective strength of the southern SAF. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1841273
- PAR ID:
- 10476308
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Solid Earth
- Volume:
- 128
- Issue:
- 11
- ISSN:
- 2169-9313
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract The Sulaiman Fold Thrust (SFT) in Central Pakistan formed during the India‐Eurasia collision in the late Cenozoic. However, the mechanics of shortening of the brittle crust at time scales of seismic cycles is still poorly understood. Here, we use radar interferometry to analyze the deformation associated with the 2015 magnitude (Mw) 5.7 Dajal blind earthquake at the eastern boundary of the SFT. We use kinematic inversions to determine the distribution of slip on the frontal ramp and of flexural slip along active axial surfaces for the forward‐ and backward‐verging two end‐member models: a double fault‐bend‐fold system and a fault‐propagation‐fold. In both models, a décollement branches into a shallow ramp at approximately 7.5 km depth with coseismic folding in the hanging wall. The Dajal earthquake ruptured the base of the Boundary Thrust buried under the sediment from the Indus‐River floodplain, representing fault‐bend or fault‐propagation folding some 30 km off its nearest surface exposure.more » « less
- 
            Abstract Accurate seismic images of the crust are essential for assessing seismic hazards and elucidating tectonic processes that shape surface landforms. Although California and Nevada have been studied extensively using various seismic datasets and tomographic methods, the region lacks a seismic model that can accurately define both the shallow (<8 km) and deeper crust. We take the advantage of recent increases in seismic data coverage to build a new 3D shear wave speed model by jointly inverting Rayleigh wave ellipticity, phase velocity, and teleseismic P waveforms. In the Great Valley, the new model reveals an asymmetric basement, steeply dipping in the west and gently dipping in the east. Beneath its western margin, in the Coast Ranges, we resolve a wedge‐shaped, low‐velocity zone in the upper‐middle crust, interpreted as Franciscan Complex. Our images confirm that uplift of the western Great Valley and an eastward shift of its depositional center are caused by wedging and underthrusting of the complex during subduction. Across the Basin and Range, the resolved crust has an average thickness of 38 km in the southern half of the northern Basin and Range, about 5 km thicker than neighboring regions. The thickened crust overlaps with major volcanic centers of the mid‐Cenozoic ignimbrite flare‐up. This spatial correlation may suggest magmatic intrusions and underplating contributed to crustal growth and thickening prior to Miocene Basin and Range extension. Overall, the new model is consistent with active source studies in the region but provides a more comprehensive view of shallow and deep structures across this large and tectonically complex region.more » « less
- 
            Abstract The Shumagin seismic gap along the Alaska Peninsula experienced a major,MW7.8, interplate thrust earthquake on 22 July 2020. Several available finite‐fault inversions indicate patchy slip of up to 4 m at 8–48 km depth. There are differences among the models in peak slip and absolute placement of slip on the plate boundary, resulting from differences in data distributions, model parameterizations, and inversion algorithms. Two representative slip models obtained from inversions of large seismic and geodetic data sets produce very different tsunami predictions at tide gauges and deep‐water pressure sensors (DART stations), despite having only secondary differences in slip distribution. This is found to be the result of the acute sensitivity of the tsunami excitation for rupture below the continental shelf in proximity to an abrupt shelf break. Iteratively perturbing seismic and geodetic inversions by constraining fault model extent along dip and strike, we obtain an optimal rupture model compatible with teleseismicPandSHwaves, regional three‐component broadband and strong‐motion seismic recordings, hr‐GNSS time series and static offsets, as well as tsunami recordings at DART stations and regional and remote tide gauges. Slip is tightly bounded between 25 and 40 km depth, the up‐dip limit of slip in the earthquake is resolved to be well‐inland of the shelf break, and the rupture extent along strike is well‐constrained. The coseismic slip increased Coulomb stress on the shallow plate boundary extending to the trench, but the frictional behavior of the megathrust below the continental slope remains uncertain.more » « less
- 
            Abstract Axial Seamount is an active submarine volcano located at the intersection of the Cobb hot spot and the Juan de Fuca Ridge (45°57′N, 130°01′W). Bottom pressure recorders captured co‐eruption subsidence of 2.4–3.2 m in 1998, 2011, and 2015, and campaign‐style pressure surveys every 1–2 years have provided a long‐term time series of inter‐eruption re‐inflation. The 2015 eruption occurred shortly after the Ocean Observatories Initiative (OOI) Cabled Array came online providing real‐time seismic and deformation observations for the first time. Nooner and Chadwick (2016,https://doi.org/10.1126/science.aah4666) used the available vertical deformation data to model the 2015 eruption deformation source as a steeply dipping prolate‐spheroid, approximating a high‐melt zone or conduit beneath the eastern caldera wall. More recently, Levy et al. (2018,https://doi.org/10.1130/G39978.1) used OOI seismic data to estimate dip‐slip motion along a pair of outward‐dipping caldera ring faults. This fault motion complicates the deformation field by contributing up to several centimeters of vertical seafloor motion. In this study, fault‐induced surface deformation was calculated from the slip estimates of Levy et al. (2018,https://doi.org/10.1130/G39978.1) then removed from vertical deformation data prior to model inversions. Removing fault motion resulted in an improved model fit with a new best‐fitting deformation source located 2.11 km S64°W of the source of Nooner and Chadwick (2016,https://doi.org/10.1126/science.aah4666) with similar geometry. This result shows that ring fault motion can have a significant impact on surface deformation, and future modeling efforts need to consider the contribution of fault motion when estimating the location and geometry of subsurface magma movement at Axial Seamount.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
