SUMMARY The Ecuadorian forearc is a complex region of accreted terranes with a history of large megathrust earthquakes. Most recently, a Mw 7.8 megathrust earthquake ruptured the plate boundary offshore of Pedernales, Ecuador on 16 April 2016. Following this event, an international collaboration arranged by the Instituto Geofisico at the Escuela Politécnica Nacional mobilized a rapid deployment of 65 seismic instruments along the Ecuadorian forearc. We combine this new seismic data set with 14 permanent stations from the Ecuadorian national network to better understand how variations in crustal structure relate to regional seismic hazards along the margin. Here, we present receiver function adaptive common conversion point stacks and a shear velocity model derived from the joint inversion of receiver functions and surface wave dispersion data obtained through ambient noise cross-correlations for the upper 50 km of the forearc. Beneath the forearc crust, we observe an eastward dipping slow velocity anomaly we interpret as subducting oceanic crust, which shallows near the projected centre of the subducting Carnegie Ridge. We also observe a strong shallow positive conversion in the Ecuadorian forearc near the Borbon Basin indicating a major discontinuity at a depth of ∼7 km. This conversion is not ubiquitous and may be the top of the accreted terranes. We also observe significant north–south changes in shear wave velocity. The velocity changes indicate variations in the accreted terranes and may indicate an increased amount of hydration beneath the Manabí Basin. This change in structure also correlates geographically with the southern rupture limit of multiple high magnitude megathrust earthquakes. The earthquake record along the Ecuadorian trench shows that no event with a Mw >7.4 has ruptured south of ∼0.5°S in southern Ecuador or northern Peru. Our observations, along with previous studies, suggest that variations in the forearc crustal structure and subducting oceanic crust may influance the occurrence and spatial distribution of high magnitude seismicity in the region.
more »
« less
Sedimentary and Crustal Structure of the Western United States From Joint Inversion of Multiple Passive Seismic Datasets
Abstract Accurate seismic images of the crust are essential for assessing seismic hazards and elucidating tectonic processes that shape surface landforms. Although California and Nevada have been studied extensively using various seismic datasets and tomographic methods, the region lacks a seismic model that can accurately define both the shallow (<8 km) and deeper crust. We take the advantage of recent increases in seismic data coverage to build a new 3D shear wave speed model by jointly inverting Rayleigh wave ellipticity, phase velocity, and teleseismic P waveforms. In the Great Valley, the new model reveals an asymmetric basement, steeply dipping in the west and gently dipping in the east. Beneath its western margin, in the Coast Ranges, we resolve a wedge‐shaped, low‐velocity zone in the upper‐middle crust, interpreted as Franciscan Complex. Our images confirm that uplift of the western Great Valley and an eastward shift of its depositional center are caused by wedging and underthrusting of the complex during subduction. Across the Basin and Range, the resolved crust has an average thickness of 38 km in the southern half of the northern Basin and Range, about 5 km thicker than neighboring regions. The thickened crust overlaps with major volcanic centers of the mid‐Cenozoic ignimbrite flare‐up. This spatial correlation may suggest magmatic intrusions and underplating contributed to crustal growth and thickening prior to Miocene Basin and Range extension. Overall, the new model is consistent with active source studies in the region but provides a more comprehensive view of shallow and deep structures across this large and tectonically complex region.
more »
« less
- Award ID(s):
- 1942431
- PAR ID:
- 10367788
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Solid Earth
- Volume:
- 127
- Issue:
- 2
- ISSN:
- 2169-9313
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This study addresses a significant gap in understanding the features of the south‐central Cascadia subduction zone, a region characterized by complex geologic, tectonic, and seismic transitions both offshore and onshore. Unlike other segments along this margin, this area lacks a 3‐D velocity model to delineate its structural and geological features on a fine scale. To address this void, we developed a high‐resolution 3‐D P‐wave velocity model using active source seismic data from ship‐borne seismic shots recorded on temporary and permanent onshore seismic stations and ocean‐bottom seismometers. Our model shows velocity variations across the region with distinct velocity‐depth profiles for the Siletz, Franciscan, and Klamath terranes in the overlying plate. We identified seaward dipping high‐velocity static backstops associated with the Siletz and Klamath terranes, situated near the shoreline and further inland, respectively. Regions of reduced crustal velocity are associated with crustal faults. Moreover, there is significant along‐strike depth variation in the subducting slab, which is about 4 km deeper near the thick, dense Siletz terrane and becomes shallower near the predominantly less‐dense Franciscan terrane. This highlights a sudden tectonic and geologic transition at the southern boundary of the Siletz terrane. Our velocity model also indicates slightly increased hydration, though still minimal, in both the oceanic crust and the upper mantle of the subducting plate compared to other parts of the margin.more » « less
-
Abstract The San Fernando Valley (SFV), a densely populated region in Southern California, has high earthquake hazard due to a complex network of active faults and the amplifying effects of the sedimentary basin. Since the devastating 1994 Mw 6.7 Northridge earthquake, numerous studies have examined its structure using various geological and geophysical datasets. However, current seismic velocity models still lack the resolution to accurately image the near-surface velocity structure and concealed or blind faults, which are critical for high-frequency wavefield simulations and earthquake hazard modeling. To address these challenges, we develop a 3D high-resolution shear-wave velocity model for the SFV using ambient noise data from a dense array of 140 seismic nodes and 10 Southern California Seismic Network stations. We also invert gravity data to map the basin geometry and integrate horizontal-to-vertical spectral ratios and aeromagnetic data to constrain interfaces and map major geological structures. With a lateral resolution of 250 m near the basin center, our model reveals previously unresolved geological features, including the detailed geometry of the basin and previously unmapped structure of faults at depth. The basin deepens from the Santa Monica Mountains in the south to approximately 4 km near its center and 7 km in the Sylmar sub-basin at the basin’s northern margin. Strong velocity contrasts are observed across major faults, at the basin edges, and in the basin’s upper 500 m, for which we measure velocities as low as 200 m/s. Our high-resolution model will enhance ground-motion simulations and earthquake hazard assessments for the SFV and has implications for other urban areas with high seismic risk.more » « less
-
Abstract The Southern San Andreas Fault (SSAF) in California is one of the most thoroughly studied faults in the world, but its configuration at seismogenic depths remains enigmatic in the Coachella Valley. We use a combination of space geodetic and seismic observations to demonstrate that the relatively straight southernmost section of the SSAF, between Thousand Palms and Bombay Beach, is dipping to the northeast at 60–80° throughout the upper crust (<10 km), including the shallow aseismic layer. We constrain the fault attitude in the top 2–3 km using inversions of surface displacements associated with shallow creep, and seismic data from a dense nodal array crossing the fault trace near Thousand Palms. The data inversions show that the shallow dipping structure connects with clusters of seismicity at depth, indicating a continuous throughgoing fault surface. The dipping fault geometry has important implications for the long‐term fault slip rate, the intensity of ground shaking during future large earthquakes, and the effective strength of the southern SAF.more » « less
-
Abstract We use Eikonal tomography to derive phase and group velocities of surface waves for the plate boundary region in Southern California. Seismic noise data in the period range 2 and 20 s recorded in year 2014 by 346 stations with ~1‐ to 30‐km station spacing are analyzed. Rayleigh and Love wave phase travel times are measured using vertical‐vertical and transverse‐transverse noise cross correlations, and group travel times are derived from the phase measurements. Using the Eikonal equation for each location and period, isotropic phase and group velocities and 2‐psi azimuthal anisotropy are determined statistically with measurements from different virtual sources. Starting with the SCEC Community Velocity Model, the observed 2.5‐ to 16‐s isotropic phase and group dispersion curves are jointly inverted on a 0.05° × 0.05° grid to obtain local 1‐D piecewise shear wave velocity (Vs) models. Compared to the starting model, the final results have generally lowerVsin the shallow crust (top 3–10 km), particularly in areas such as basins and fault zones. The results also show clear velocity contrasts across the San Andreas, San Jacinto, Elsinore, and Garlock Faults and suggest that the San Andreas Fault southeast of San Gorgonio Pass is dipping to the northeast. Investigation of the nonuniqueness of the 1‐DVsinversion suggests that imaging the top 3‐kmVsstructure requires either shorter period (≤2 s) surface wave dispersion measurements or other types of data set such as Rayleigh wave ellipticity.more » « less
An official website of the United States government
