skip to main content


Title: Asymmetric PAKE with Low Computation and communication
In Crypto’21 Gu, Jarecki, and Krawczyk [25] showed an asymmetric password authenticated key exchange protocol (aPAKE) whose computational cost matches (symmetric) password authenticated key exchange (PAKE) and plain (i.e. unauthenticated) key exchange (KE). However, this minimal-cost aPAKE did not match prior aPAKE’s in round complexity, using 4 rounds assuming the client initiates compared to 2 rounds in an aPAKE of Bradley et al. [13]. In this paper we show two aPAKE protocols (but not strong aPAKEs like [13, 30]), which achieve optimal computational cost and optimal round complexity. Our protocols can be seen as variants of the Encrypted Key Exchange (EKE) compiler of Bellovin and Merritt [7], which creates password-authenticated key exchange by password-encrypting messages in a key exchange protocol. Whereas Bellovin and Merritt used this method to construct a PAKE by applying password-encryption to KE messages, we construct an aPAKE by password-encrypting messages of a unilaterally authenticated Key Exchange (ua-KE). We present two versions of this compiler. The first uses salted password hash and takes 2 rounds if the server initiates. The second uses unsalted password hash and takes a single simultaneous flow, thus simultaneously matching the minimal computational cost and the minimal round complexity of PAKE and KE. We analyze our aPAKE protocols assuming an Ideal Cipher (IC) on a group, and we analyze them as modular constructions from ua-KE realized via a universally composable Authenticated Key Exchange where the server uses one-time keys (otk-AKE). We also show that one-pass variants of 3DH and HMQV securely realize otk-AKE in the ROM. Interestingly, the two resulting concrete aPAKE’s use the exact same protocol messages as variants of EKE, and the only difference between the symmetric PAKE (EKE) and asymmetric PAKE (our protocols) is in the key derivation equation.  more » « less
Award ID(s):
2030575
NSF-PAR ID:
10476567
Author(s) / Creator(s):
; ; ;
Editor(s):
Dunkelman, O.; Dziembowski, S
Publisher / Repository:
Advances in Cryptology – EUROCRYPT 2022. EUROCRYPT 2022
Date Published:
Journal Name:
Lecture Notes in Computer Science (LNCS)
Volume:
13276
ISSN:
0302-9743
Format(s):
Medium: X
Location:
https://link.springer.com/chapter/10.1007/978-3-031-07085-3_5#citeas
Sponsoring Org:
National Science Foundation
More Like this
  1. Hazay, Carmit ; Stam, Martin (Ed.)
    An Ideal Cipher (IC) is a cipher where each key defines a random permutation on the domain. Ideal Cipher on a group has many attractive applications, e.g., the Encrypted Key Exchange (EKE) protocol for Password Authenticated Key Exchange (PAKE) [8], or asymmetric PAKE (aPAKE) [31, 33]. However, known constructions for IC on a group domain all have drawbacks, including key leakage from timing information [12], requiring 4 hash-onto-group operations if IC is an 8-round Feistel [22], and limiting the domain to half the group [9] or using variable-time encoding [39, 47] if IC is implemented via (quasi-) bijections from groups to bitstrings [33]. We propose an IC relaxation called a (Randomized) Half-Ideal Cipher (HIC), and we show that HIC on a group can be realized by a modified 2-round Feistel (m2F), at a cost of 1 hash-onto-group operation, which beats existing IC constructions in versatility and computational cost. HIC weakens IC properties by letting part of the ciphertext be non-random, but we exemplify that it can be used as a drop-in replacement for IC by showing that EKE [8] and aPAKE of [33] realize respectively UC PAKE and UC aPAKE even if they use HIC instead of IC. The m2F construction can also serve as IC domain extension, because m2F constructs HIC on domain D from an RO-indifferentiable hash onto D and an IC on 2k-bit strings, for k a security parameter. One application of such extender is a modular lattice-based UC PAKE using EKE instantiated with HIC and anonymous lattice-based KEM. 
    more » « less
  2. We analyze the Secure Remote Password (SRP) protocol for structural weaknesses using the Cryptographic Protocol Shapes Analyzer (CPSA) in the first formal analysis of SRP (specifically, Version 3). SRP is a widely deployed Password Authenticated Key Exchange (PAKE) protocol used in 1Password, iCloud Keychain, and other products. As with many PAKE protocols, two participants use knowledge of a preshared password to authenticate each other and establish a session key. SRP aims to resist dictionary attacks, not store plaintext-equivalent passwords on the server, avoid patent infringement, and avoid export controls by not using encryption. Formal analysis of SRP is challenging in part because existing tools provide no simple way to reason about its use of the mathematical expression “v + g b mod q”. Modeling v + g b as encryption, we complete an exhaustive study of all possible execution sequences of SRP. Ignoring possible algebraic attacks, this analysis detects no major structural weakness, and in particular no leakage of any secrets. We do uncover one notable weakness of SRP, which follows from its design constraints. It is possible for a malicious server to fake an authentication session with a client, without the client’s participation. This action might facilitate an escalation of privilege attack, if the client has higher privileges than does the server. We conceived of this attack before we used CPSA and confirmed it by generating corresponding execution shapes using CPSA. 
    more » « less
  3. We analyze the Secure Remote Password (SRP) protocol for structural weaknesses using the Cryptographic Protocol Shapes Analyzer (CPSA) in the first formal analysis of SRP (specifically, Version 3). SRP is a widely deployed Password Authenticated Key Exchange (PAKE) protocol used in 1Password, iCloud Keychain, and other products. As with many PAKE protocols, two participants use knowledge of a pre-shared password to authenticate each other and establish a session key. SRP aims to resist dictionary attacks, not store plaintext-equivalent passwords on the server, avoid patent infringement, and avoid export controls by not using encryption. Formal analysis of SRP is challenging in part because existing tools provide no simple way to reason about its use of the mathematical expression “v + g b mod q”. Modeling v + g b as encryption, we complete an exhaustive study of all possible execution sequences of SRP. Ignoring possible algebraic attacks, this analysis detects no major structural weakness, and in particular no leakage of any secrets. We do uncover one notable weakness of SRP, which follows from its design constraints. It is possible for a malicious server to fake an authentication session with a client, without the client’s participation. This action might facilitate an escalation of privilege attack, if the client has higher privileges than does the server. We conceived of this attack before we used CPSA and confirmed it by generating corresponding execution shapes using CPSA. 
    more » « less
  4. null (Ed.)
    We present a secure two-factor authentication (TFA) scheme based on the user’s possession of a password and a crypto-capable device. Security is “end-to-end” in the sense that the attacker can attack all parts of the system, including all communication links and any subset of parties (servers, devices, client terminals), can learn users’ passwords, and perform active and passive attacks, online and offline. In all cases the scheme provides the highest attainable security bounds given the set of compromised components. Our solution builds a TFA scheme using any Device-enhanced Password-authenticated Key Exchange (PAKE), defined by Jarecki et al., and any Short Authenticated String (SAS) Message Authentication, defined by Vaudenay. We show an efficient instantiation of this modular construction, which utilizes any password-based client-server authentication method, with or without reliance on public-key infrastructure. The security of the proposed scheme is proven in a formal model that we formulate as an extension of the traditional PAKE model. We also report on a prototype implementation of our schemes, including TLS-based and PKI-free variants, as well as several instantiations of the SAS mechanism, all demonstrating the practicality of our approach. Finally, we present a usability study evaluating the viability of our protocol contrasted with the traditional PIN-based TFA approach in terms of efficiency, potential for errors, user experience, and security perception of the underlying manual process. 1 
    more » « less
  5. In a key-agreement protocol whose security is proven in the random oracle model (ROM), the parties and the eavesdropper can make bounded number of queries to a shared random function (an “oracle”). Such protocol are the alternative to key-agreement protocols whose security is based on “public-key assumptions”, assumptions that being more structured are presumingly more vulnerable to attacks. Barak and Mahmoody [Crypto ’09] (following Impagliazzo and Rudich [STOC ’89]) have shown the ROM key-agreement protocols can only guarantee limited secrecy: the key of any `l-query protocol can be revealed by an O(l^2 )-query adversary, a bound that matches the gap obtained by the Merkle’s Puzzles two-message protocol of Merkle [CACM ’78]. While this quadratic gap might not seem like much, if the honest parties are willing to work “hard enough” and given continuousness improvement in common hash functions evaluation time, this gap yields a good enough advantage (assuming the security of the protocol holds when initiating the random function with a fixed hash function). In this work we consider the communication complexity of ROM key-agreement protocols. In Merkle’s Puzzles, the honest parties need to exchange Ω(l) bits (ignoring logarithmic factors) to obtain secrecy against an eavesdropper that makes roughly l^2 queries, which makes the protocol unrealizable in many settings. We show that for protocols with certain natural properties, such high communication is unavoidable. Specifically, this is the case if the honest parties’ queries are independent and uniformly random, or alternatively if the protocol uses non-adaptive queries and has only two rounds. Since two-round key-agreement protocol are equivalent to public-key encryption scheme (seeing the first message as the public-key), the latter result bounds the public-key and encryption size of public-key encryption scheme whose security is proven in the ROM. 
    more » « less