skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Randomized Half-Ideal Cipher on Groups with Applications to UC (a)PAKE
An Ideal Cipher (IC) is a cipher where each key defines a random permutation on the domain. Ideal Cipher on a group has many attractive applications, e.g., the Encrypted Key Exchange (EKE) protocol for Password Authenticated Key Exchange (PAKE) [8], or asymmetric PAKE (aPAKE) [31, 33]. However, known constructions for IC on a group domain all have drawbacks, including key leakage from timing information [12], requiring 4 hash-onto-group operations if IC is an 8-round Feistel [22], and limiting the domain to half the group [9] or using variable-time encoding [39, 47] if IC is implemented via (quasi-) bijections from groups to bitstrings [33]. We propose an IC relaxation called a (Randomized) Half-Ideal Cipher (HIC), and we show that HIC on a group can be realized by a modified 2-round Feistel (m2F), at a cost of 1 hash-onto-group operation, which beats existing IC constructions in versatility and computational cost. HIC weakens IC properties by letting part of the ciphertext be non-random, but we exemplify that it can be used as a drop-in replacement for IC by showing that EKE [8] and aPAKE of [33] realize respectively UC PAKE and UC aPAKE even if they use HIC instead of IC. The m2F construction can also serve as IC domain extension, because m2F constructs HIC on domain D from an RO-indifferentiable hash onto D and an IC on 2k-bit strings, for k a security parameter. One application of such extender is a modular lattice-based UC PAKE using EKE instantiated with HIC and anonymous lattice-based KEM.  more » « less
Award ID(s):
2030575
PAR ID:
10476569
Author(s) / Creator(s):
; ;
Editor(s):
Hazay, Carmit; Stam, Martin
Publisher / Repository:
https://link.springer.com/chapter/10.1007/978-3-031-30589-4_5
Date Published:
Journal Name:
Lecture notes in computer science: Advances in Cryptology – EUROCRYPT 2023. EUROCRYPT 2023
Volume:
14008
ISSN:
0302-9743
Format(s):
Medium: X
Location:
https://doi.org/10.1007/978-3-031-30589-4\_5
Sponsoring Org:
National Science Foundation
More Like this
  1. Dunkelman, O.; Dziembowski, S (Ed.)
    In Crypto’21 Gu, Jarecki, and Krawczyk [25] showed an asymmetric password authenticated key exchange protocol (aPAKE) whose computational cost matches (symmetric) password authenticated key exchange (PAKE) and plain (i.e. unauthenticated) key exchange (KE). However, this minimal-cost aPAKE did not match prior aPAKE’s in round complexity, using 4 rounds assuming the client initiates compared to 2 rounds in an aPAKE of Bradley et al. [13]. In this paper we show two aPAKE protocols (but not strong aPAKEs like [13, 30]), which achieve optimal computational cost and optimal round complexity. Our protocols can be seen as variants of the Encrypted Key Exchange (EKE) compiler of Bellovin and Merritt [7], which creates password-authenticated key exchange by password-encrypting messages in a key exchange protocol. Whereas Bellovin and Merritt used this method to construct a PAKE by applying password-encryption to KE messages, we construct an aPAKE by password-encrypting messages of a unilaterally authenticated Key Exchange (ua-KE). We present two versions of this compiler. The first uses salted password hash and takes 2 rounds if the server initiates. The second uses unsalted password hash and takes a single simultaneous flow, thus simultaneously matching the minimal computational cost and the minimal round complexity of PAKE and KE. We analyze our aPAKE protocols assuming an Ideal Cipher (IC) on a group, and we analyze them as modular constructions from ua-KE realized via a universally composable Authenticated Key Exchange where the server uses one-time keys (otk-AKE). We also show that one-pass variants of 3DH and HMQV securely realize otk-AKE in the ROM. Interestingly, the two resulting concrete aPAKE’s use the exact same protocol messages as variants of EKE, and the only difference between the symmetric PAKE (EKE) and asymmetric PAKE (our protocols) is in the key derivation equation. 
    more » « less
  2. In the past three decades, an impressive body of knowledge has been built around secure and private password authentication. In particular, secure password-authenticated key exchange (PAKE) protocols require only minimal overhead over a classical Diffie-Hellman key exchange. PAKEs are also known to fulfill strong composable security guarantees that capture many password-specific concerns such as password correlations or password mistyping, to name only a few. However, to enjoy both round-optimality and strong security, applications of PAKE protocols must provide unique session and participant identifiers. If such identifiers are not readily available, they must be agreed upon at the cost of additional communication flows, a fact which has been met with incomprehension among practitioners, and which hindered the adoption of provably secure password authentication in practice. In this work, we resolve this issue by proposing a new paradigm for truly password-only yet securely composable PAKE, called bare PAKE. We formally prove that two prominent PAKE protocols, namely CPace and EKE, can be cast as bare PAKEs and hence do not require pre-agreement of anything else than a password. Our bare PAKE modeling further allows to investigate a novel “reusability” property of PAKEs, i.e., whether n^2 pairwise keys can be exchanged from only n messages, just as the Diffie-Hellman non-interactive key exchange can do in a public-key setting. As a side contribution, this add-on property of bare PAKEs leads us to observe that some previous PAKE constructions relied on unnecessarily strong, “reusable” building blocks. By showing that “non-reusable” tools suffice for standard PAKE, we open a new path towards round-optimal post-quantum secure password-authenticated key exchange. 
    more » « less
  3. Micciancio, Daniele; Ristenpart, Thomas (Ed.)
    Protocols for password authenticated key exchange (PAKE) allow two parties who share only a weak password to agree on a cryptographic key. We revisit the notion of PAKE in the universal composability (UC) framework, and propose a relaxation of the PAKE functionality of Canetti et al. that we call lazy-extraction PAKE (lePAKE). Our relaxation allows the ideal-world adversary to postpone its password guess until after a session is complete. We argue that this relaxed notion still provides meaningful security in the password-only setting. As our main result, we show that several PAKE protocols that were previously only proven secure with respect to a “game-based” definition of security can be shown to UC-realize the lePAKE functionality in the random-oracle model. These include SPEKE, SPAKE2, and TBPEKE, the most efficient PAKE schemes currently known. 
    more » « less
  4. null (Ed.)
    The random-permutation model (RPM) and the ideal-cipher model (ICM) are idealized models that offer a simple and intuitive way to assess the conjectured standard-model security of many important symmetric-key and hash-function constructions. Similarly, the generic-group model (GGM) captures generic algorithms against assumptions in cyclic groups by modeling encodings of group elements as random injections and allows to derive simple bounds on the advantage of such algorithms. Unfortunately, both well-known attacks, e.g., based on rainbow tables (Hellman, IEEE Transactions on Information Theory ’80), and more recent ones, e.g., against the discrete-logarithm problem (Corrigan-Gibbs and Kogan, EUROCRYPT ’18), suggest that the concrete security bounds one obtains from such idealized proofs are often completely inaccurate if one considers non-uniform or preprocessing attacks in the standard model. To remedy this situation, this work defines the auxiliary-input (AI) RPM/ICM/GGM, which capture both non-uniform and preprocessing attacks by allowing an attacker to leak an arbitrary (bounded-output) function of the oracle’s function table; derives the first non-uniform bounds for a number of important practical applications in the AI-RPM/ICM, including constructions based on the Merkle-Damgård and sponge paradigms, which underly the SHA hashing standards, and for AI-RPM/ICM applications with computational security; and using simpler proofs, recovers the AI-GGM security bounds obtained by Corrigan-Gibbs and Kogan against preprocessing attackers, for a number of assumptions related to cyclic groups, such as discrete logarithms and Diffie-Hellman problems, and provides new bounds for two assumptions. An important step in obtaining these results is to port the tools used in recent work by Coretti et al. (EUROCRYPT ’18) from the ROM to the RPM/ICM/GGM, resulting in very powerful and easy-to-use tools for proving security bounds against non-uniform and preprocessing attacks. 
    more » « less
  5. In a key-agreement protocol whose security is proven in the random oracle model (ROM), the parties and the eavesdropper can make bounded number of queries to a shared random function (an “oracle”). Such protocol are the alternative to key-agreement protocols whose security is based on “public-key assumptions”, assumptions that being more structured are presumingly more vulnerable to attacks. Barak and Mahmoody [Crypto ’09] (following Impagliazzo and Rudich [STOC ’89]) have shown the ROM key-agreement protocols can only guarantee limited secrecy: the key of any `l-query protocol can be revealed by an O(l^2 )-query adversary, a bound that matches the gap obtained by the Merkle’s Puzzles two-message protocol of Merkle [CACM ’78]. While this quadratic gap might not seem like much, if the honest parties are willing to work “hard enough” and given continuousness improvement in common hash functions evaluation time, this gap yields a good enough advantage (assuming the security of the protocol holds when initiating the random function with a fixed hash function). In this work we consider the communication complexity of ROM key-agreement protocols. In Merkle’s Puzzles, the honest parties need to exchange Ω(l) bits (ignoring logarithmic factors) to obtain secrecy against an eavesdropper that makes roughly l^2 queries, which makes the protocol unrealizable in many settings. We show that for protocols with certain natural properties, such high communication is unavoidable. Specifically, this is the case if the honest parties’ queries are independent and uniformly random, or alternatively if the protocol uses non-adaptive queries and has only two rounds. Since two-round key-agreement protocol are equivalent to public-key encryption scheme (seeing the first message as the public-key), the latter result bounds the public-key and encryption size of public-key encryption scheme whose security is proven in the ROM. 
    more » « less