skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A physiological approach for assessing human survivability and liveability to heat in a changing climate
Abstract Most studies projecting human survivability limits to extreme heat with climate change use a 35 °C wet-bulb temperature (Tw) threshold without integrating variations in human physiology. This study applies physiological and biophysical principles for young and older adults, in sun or shade, to improve current estimates of survivability and introduce liveability (maximum safe, sustained activity) under current and future climates. Our physiology-based survival limits show a vast underestimation of risks by the 35 °C Twmodel in hot-dry conditions. Updated survivability limits correspond to Tw~25.8–34.1 °C (young) and ~21.9–33.7 °C (old)—0.9–13.1 °C lower than Tw = 35 °C. For older female adults, estimates are ~7.2–13.1 °C lower than 35 °C in dry conditions. Liveability declines with sun exposure and humidity, yet most dramatically with age (2.5–3.0 METs lower for older adults). Reductions in safe activity for younger and older adults between the present and future indicate a stronger impact from aging than warming.  more » « less
Award ID(s):
2045663
PAR ID:
10476729
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
14
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Kerry Emanuel (Ed.)
    As heatwaves become more frequent, intense, and longer-lasting due to climate change, the question of breaching thermal limits becomes pressing. A wet-bulb temperature (Tw) of 35 °C has been proposed as a theoretical upper limit on human abilities to biologically thermoregulate. But, recent—empirical—research using human subjects found a significantly lower maximum Twat which thermoregulation is possible even with minimal metabolic activity. Projecting future exposure to this empirical critical environmental limit has not been done. Here, using this more accurate threshold and the latest coupled climate model results, we quantify exposure to dangerous, potentially lethal heat for future climates at various global warming levels. We find that humanity is more vulnerable to moist heat stress than previously proposed because of these lower thermal limits. Still, limiting warming to under 2 °C nearly eliminates exposure and risk of widespread uncompensable moist heatwaves as a sharp rise in exposure occurs at 3 °C of warming. Parts of the Middle East and the Indus River Valley experience brief exceedances with only 1.5 °C warming. More widespread, but brief, dangerous heat stress occurs in a +2 °C climate, including in eastern China and sub-Saharan Africa, while the US Midwest emerges as a moist heat stress hotspot in a +3 °C climate. In the future, moist heat extremes will lie outside the bounds of past human experience and beyond current heat mitigation strategies for billions of people. While some physiological adaptation from the thresholds described here is possible, additional behavioral, cultural, and technical adaptation will be required to maintain healthy lifestyles. 
    more » « less
  2. Abstract Sleep spindles are a physiological marker of off-line memory consolidation. In young adults, sleep spindles are preferentially responsive to encoded information that is tagged as having future relevance. Older adults, on the other hand, show reduced capacity for future simulation and alterations in sleep physiology. Healthy young adults (n = 38) and older adults (n = 28) completed an adaptation night, followed by two in-laboratory polysomnography nights, in which they mentally simulated future events or remembered past events, recorded via written descriptions. We quantified the degree of future/past thinking using linguistic analysis of time orientation. In young adults, greater future thinking was linked to greater spindle density, even when controlling for gender, age, and word count (rp = .370, p = .028). The opposite was true for older adults, such that greater future thinking was associated with reduced spindle density (rp = −.431, p = .031). These patterns were selective to future thinking (not observed for past thinking). The collective findings implicate an impaired interaction between future relevance tagging and sleep physiology as a mechanism by which aging compromises sleep-dependent cognitive processing. 
    more » « less
  3. Abstract Many communities struggle to provide safe, accessible, and reliable transportation services for older adults due to high demand, rising costs, driver shortages, and other evolving challenges. Innovative transportation solutions are needed to support the current and future populations of older adults. Low-speed, shared-use, driverless shuttles present an exciting development in automated vehicle (AV) technology with potential to meet mobility needs of older adults in their community. Understanding older adults’ perceptions about and willingness to consider using these emerging modes of transportation is vital to realizing the full potential of these technologies. This presentation summarizes an in-person study conducted with 12 older (average: 66 +/- 4 years of age, range: 60 to 80 years) and 10 younger (average: 44 +/- 11 years) adults that evaluated a stationary, proof-of-concept shared-use AV retrofitted with accessibility features. We will present findings on perceptions regarding accessibility, safety, and willingness to use driverless AVs along with human factors design recommendations. While questionnaire-based studies have been the dominant approach to understanding older adults’ perceptions about shared-use AVs, in-person evaluations even with prototype AVs as described here, provide opportunities to identify goals, needs and preferences of older adults concerning usability and safety in early design stages, and through hands-on exploration help older adults develop good mental models, i.e., understand AV capabilities and limitations, towards building trust and acceptance for these emerging modes of transportation. Research and policy implications will be discussed towards enabling emerging driverless shared-use AV technologies that support safe and independent community mobility for older adults. 
    more » « less
  4. Japanese adults typically have healthier lipid profiles than American and European adults and a lower prevalence and later onset of atherosclerotic cardiovascular disease (ASCVD). Many Japanese also have uniquely elevated levels of high-density lipoprotein cholesterol (HDL-C). The following analysis examined the relationship between HDL-C level and HDL-C peroxide content, a bioindicator of unhealthy lipid metabolism in Japanese adults. Blood samples were collected from 463 participants, 31–84 years of age, who lived in Tokyo. A second blood sample was collected 5 years later from 241 of the participants, allowing us to evaluate the temporal stability of the inverse correlation between HDL-C level and HDL-C peroxide content. Glucoregulation and inflammatory activity were assessed because both can be associated with dyslipidemia and HDL-C dysfunction. Obesity and central adiposity were also considered. Overall, women had healthier HDL-C profiles than men. Elevated HDL-C (>90 mg/dL) was common (16.6%) and found more often in women. Higher HDL-C peroxide content was associated with older age and central adiposity and incremented further when HA1c and CRP were higher. When assessed 5 years later, lower HDL-C peroxide content continued to be evident in adults with higher HDL-C. While similar associations have been described for other populations, most Japanese adults typically had healthier levels of HDL-C with lower HDL-C peroxide content than previously reported for American adults. 
    more » « less
  5. Abstract Improved understanding of the effects of meteorological conditions on the transmission of SARS-CoV-2, the causative agent for COVID-19 disease, is needed. Here, we estimate the relationship between air temperature, specific humidity, and ultraviolet radiation and SARS-CoV-2 transmission in 2669 U.S. counties with abundant reported cases from March 15 to December 31, 2020. Specifically, we quantify the associations of daily mean temperature, specific humidity, and ultraviolet radiation with daily estimates of the SARS-CoV-2 reproduction number (Rt) and calculate the fraction ofRtattributable to these meteorological conditions. Lower air temperature (within the 20–40 °C range), lower specific humidity, and lower ultraviolet radiation were significantly associated with increasedRt. The fraction ofRtattributable to temperature, specific humidity, and ultraviolet radiation were 3.73% (95% empirical confidence interval [eCI]: 3.66–3.76%), 9.35% (95% eCI: 9.27–9.39%), and 4.44% (95% eCI: 4.38–4.47%), respectively. In total, 17.5% ofRtwas attributable to meteorological factors. The fractions attributable to meteorological factors generally were higher in northern counties than in southern counties. Our findings indicate that cold and dry weather and low levels of ultraviolet radiation are moderately associated with increased SARS-CoV-2 transmissibility, with humidity playing the largest role. 
    more » « less