skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: DESIGN NEEDS AND PERCEPTIONS OF OLDER ADULTS REGARDING SHARED-USE AUTOMATED VEHICLES
Abstract Many communities struggle to provide safe, accessible, and reliable transportation services for older adults due to high demand, rising costs, driver shortages, and other evolving challenges. Innovative transportation solutions are needed to support the current and future populations of older adults. Low-speed, shared-use, driverless shuttles present an exciting development in automated vehicle (AV) technology with potential to meet mobility needs of older adults in their community. Understanding older adults’ perceptions about and willingness to consider using these emerging modes of transportation is vital to realizing the full potential of these technologies. This presentation summarizes an in-person study conducted with 12 older (average: 66 +/- 4 years of age, range: 60 to 80 years) and 10 younger (average: 44 +/- 11 years) adults that evaluated a stationary, proof-of-concept shared-use AV retrofitted with accessibility features. We will present findings on perceptions regarding accessibility, safety, and willingness to use driverless AVs along with human factors design recommendations. While questionnaire-based studies have been the dominant approach to understanding older adults’ perceptions about shared-use AVs, in-person evaluations even with prototype AVs as described here, provide opportunities to identify goals, needs and preferences of older adults concerning usability and safety in early design stages, and through hands-on exploration help older adults develop good mental models, i.e., understand AV capabilities and limitations, towards building trust and acceptance for these emerging modes of transportation. Research and policy implications will be discussed towards enabling emerging driverless shared-use AV technologies that support safe and independent community mobility for older adults.  more » « less
Award ID(s):
2124857
PAR ID:
10519696
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Gerontological Society of America
Date Published:
Journal Name:
Innovation in Aging
Volume:
7
Issue:
Supplement_1
ISSN:
2399-5300
Page Range / eLocation ID:
890 to 890
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A sustainable transportation future is one in which people eschew personal car ownership in favor of using autonomous vehicle (AV)-based ridehailing services in a shared mode. However, the traveling public has historically shown a disinclination toward sharing rides and carpooling with strangers. In a future of AV-based ridehailing services, it will be necessary for people to embrace both AVs as well as true ridesharing to fully realize the benefits of automated and shared mobility technologies. This study investigated the factors influencing willingness to use AV-based ridehailing services in the future in a shared mode (i.e., with strangers). This was done through the estimation of a behavioral model system on a comprehensive survey data set that included rich information about attitudes, perceptions, and preferences pertaining to the adoption of AVs and shared mobility modes. The model results showed that current ridehailing experiences strongly influenced the likelihood of being willing to ride AV-based services in a shared mode. Campaigns that provide opportunities for individuals to experience such services firsthand would potentially go a long way to enabling a shared mobility future at scale. In addition, several attitudinal variables were found to strongly influence the adoption of future mobility services; these findings provide insights on the likely early adopters of shared autonomous mobility services and the types of educational awareness campaigns that may effect change in the prospects of such services. 
    more » « less
  2. Driverless or fully automated vehicles (AVs) are expected to fundamentally change how individuals and households travel and how vehicles use roadway infrastructure. The first goal of this study is to develop a modeling framework of activity-constrained household travel in a future multi-modal network with private AVs, shared-use AVs, transit, and intermodal AV-transit travel options. The second goal is to analyze the potential impacts of AVs—including intermodal AV-transit travel—on (a) household-level travel behavior, (b) household travel costs, (c) demand for transport modes, including transit, and (d) vehicle kilometers traveled or VKT. To meet the first goal, we propose and formulate the Household Activity Pattern Problem with AV-enabled Intermodal Trips (HAPP-AV-IT) that incorporates AV deadheading and intermodal AV-transit trips. The modeling framework extends prior HAPP-based formulations that model household-level travel decisions as vehicle (and person) routing and scheduling problems, similar to the pickup and delivery problem with time-windows. To meet the second goal, we apply the HAPP-AV-IT to two case studies and conduct many computational experiments. We use synthetic activity location data for synthetic households and a fictitious medium-size network with a road network, transit network, residential locations, activity locations, and parking locations. The computational results illustrate (a) the critical role that household AV ownership plays in terms of household travel decisions, modal demand, and VKT, (b) that with AVs, deadheading accounts for 30–40 % of vehicle operating distances, (c) that around 10 % of households in the study region benefit from AV-based intermodal trips, and (d) that those 10 % of households see 5 % reductions in household travel costs and 25 % reductions in VKT on average in the most transit friendly scenario. This last finding suggests that intermodal AV-transit trips may exist in a driverless vehicle future, and therefore, transit agencies and transportation planners should consider how to serve this market. We also propose and test a simple heuristic algorithm that quickly solves HAPP-AV-IT problem instances. 
    more » « less
  3. Autonomous vehicles (AV), one of the transportation industry’s biggest innovations of the past few decades, bring the promise of safer roads and significantly lower vehicle-related fatalities. While many studies have found largely positive consumer opinions regarding operating and owning such a vehicle, older adults (55+) tend to express concerns about the safety and operational risks of a vehicle with unknown capabilities. To investigate how older adults and AVs may interact, we conducted an improv- style enactment-based participatory design pilot study. We found that initial concerns about trust and safety can be diminished through training and repetitive successful vehicle operation. Additionally, our participants provided insights into the AV design considerations, needs, and interactions for older adults. These findings add to the collective body of autonomous vehicle research by demonstrating that the needs of this growing population, who may benefit significantly from access to AVs, should be considered by manufacturers. 
    more » « less
  4. Autonomous vehicles (AVs) are closer to becoming a reality in changing the landscape of commercial and personal transportation. The launch of these vehicles come with the promise of improved road safety, reduced traffic fatalities, and enhanced mobility. However, there are questions as to whether the design of AVs will meet the needs of everyone, including people with disabilities and older adults. We argue that there exists no conceptual model that guide sthe inclusive design of autonomous vehicles to benefit all intended users. This paper proposes such a model, called the User Transportation-Activity Technology (UTT) model, which supports the inclusive design of AVs. We present a review of current models of assistive technology design and their drawbacks followed by an introduction of the UTT model and its application in AV design. This paper may benefit researchers, designers, and developers of autonomous vehicles interested in addressing accessible design issues in such vehicles. 
    more » « less
  5. Abstract Pilot projects have emerged in cities globally as a way to experiment with the utilization of a suite of smart mobility and emerging transportation technologies. Automated vehicles (AVs) have become central tools for such projects as city governments and industry explore the use and impact of this emerging technology. This paper presents a large-scale assessment of AV pilot projects in U.S. cities to understand how pilot projects are being used to examine the risks and benefits of AVs, how cities integrate these potentially transformative technologies into conventional policy and planning, and how and what they are learning about this technology and its future opportunities and risks. Through interviews with planning practitioners and document analysis, we demonstrate that the approaches cities take for AVs differ significantly, and often lack coherent policy goals. Key findings from this research include: (1) a disconnect between the goals of the pilot projects and a city’s transportation goals; (2) cities generally lack a long-term vision for how AVs fit into future mobility systems and how they might help address transportation goals; (3) an overemphasis of non-transportation benefits of AV pilots projects; (4) AV pilot projects exhibit a lack of policy learning and iteration; and (5) cities are not leveraging pilot projects for public benefits. Overall, urban and transportation planners and decision makers show a clear interest to discover how AVs can be used to address transportation challenges in their communities, but our research shows that while AV pilot projects purport to do this, while having numerous outcomes, they have limited value for informing transportation policy and planning questions around AVs. We also find that AV pilot projects, as presently structured, may constrain planners’ ability to re-think transportation systems within the context of rapid technological change. 
    more » « less