skip to main content


Title: Ecophysiological variables of common shrub and grass species during the growing season following simulated sandblasting trials at the Jornada Experimental Range, New Mexico, USA, 2018 and 2019
In this dataset, we report ecophysiological variables of contrasting perennial grass (Bouteloua eriopoda, Sporobolus airoides, and Aristida purpurea) and shrub (Prosopis glandulosa, Atriplex canescens, and Larrea tridentata) functional groups before and after a series of simulated sandblasting events with various intensities and frequencies. We hypothesized that grass species are more susceptible to the resulting "sandblasting" (i.e., abrasive damage by wind-blown particulates) than shrubs, thus contributing to the shift from grass to shrub dominance. To test this, we conducted a wind tunnel experiment at the USDA Jornada Experimental Range in 2018 and 2019 growing seasons. Potted plants were subjected to different levels of sandblasting in a novel portable wind tunnel, and plants’ ecophysiological responses including leaf gas exchange and nighttime leaf stomatal conductance were quantified. All tested plants were then grown in benign greenhouse conditions to investigate plant recovery post sandblasting. This dataset contains data about plant biomass and height, leaf chlorophyll content, leaf gas exchange, stomatal conductance, and water use efficiency (WUE) under the experimental treatments above. This study is complete.  more » « less
Award ID(s):
2025166
NSF-PAR ID:
10476774
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Environmental Data Initiative
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The coordination of traits from individual organs to whole plants is under strong selection because of environmental constraints on resource acquisition and use. However, the tight coordination of traits may provide underlying mechanisms of how locally adapted plant populations can become maladapted because of climate change.

    To better understand local adaptation in intraspecific trait coordination, we studied trait variability in the widely distributed foundation tree species,Populus fremontiiusing a common garden near the mid‐elevational point of this species distribution. We examined 28 traits encompassing four spectra: phenology, leaf economic spectrum (LES), whole‐tree architecture (Corner's Rule) and wood economic spectrum (WES).

    Based on adaptive syndrome theory, we hypothesized that trait expression would be coordinated among and within trait spectra, reflecting local adaptation to either exposure to freeze‐thaw conditions in genotypes sourced from high‐elevation populations or exposure to extreme thermal stress in genotypes sourced from low‐elevation populations.

    High‐elevation genotypes expressed traits within the phenology and WES that limit frost exposure and tissue damage. Specifically, genotypes sourced from high elevations had later mean budburst, earlier mean budset, higher wood densities, higher bark fractions and smaller xylem vessels than their low‐elevation counterparts. Conversely, genotypes sourced from low elevations expressed traits within the LES that prioritized hydraulic efficiency and canopy thermal regulation to cope with extreme heat exposure, including 40% smaller leaf areas, 67% higher stomatal densities and 34% higher mean theoretical maximum stomatal conductance. Low‐elevation genotypes also expressed a lower stomatal control over leaf water potentials that subsequently dropped to pressures that could induce hydraulic failure.

    Synthesis. Our results suggest thatPopulus fremontiiexpresses a high degree of coordination across multiple trait spectra to adapt to local climate constraints on photosynthetic gas exchange, growth and survival. These results, therefore, increase our mechanistic understanding of local adaptation and the potential effects of climate change that in turn, improves our capacity to identify genotypes that are best suited for future restoration efforts.

     
    more » « less
  2. Abstract

    Cell wall properties play a major role in determining photosynthetic carbon uptake and water use through their impact on mesophyll conductance (CO2 diffusion from substomatal cavities into photosynthetic mesophyll cells) and leaf hydraulic conductance (water movement from xylem, through leaf tissue, to stomata). Consequently, modification of cell wall (CW) properties might help improve photosynthesis and crop water use efficiency (WUE). We tested this using 2 independent transgenic rice (Oryza sativa) lines overexpressing the rice OsAT10 gene (encoding a “BAHD” CoA acyltransferase), which alters CW hydroxycinnamic acid content (more para-coumaric acid and less ferulic acid). Plants were grown under high and low water levels, and traits related to leaf anatomy, CW composition, gas exchange, hydraulics, plant biomass, and canopy-level water use were measured. Alteration of hydroxycinnamic acid content led to statistically significant decreases in mesophyll CW thickness (−14%) and increased mesophyll conductance (+120%) and photosynthesis (+22%). However, concomitant increases in stomatal conductance negated the increased photosynthesis, resulting in no change in intrinsic WUE (ratio of photosynthesis to stomatal conductance). Leaf hydraulic conductance was also unchanged; however, transgenic plants showed small but statistically significant increases in aboveground biomass (AGB) (+12.5%) and canopy-level WUE (+8.8%; ratio of AGB to water used) and performed better under low water levels than wild-type plants. Our results demonstrate that changes in CW composition, specifically hydroxycinnamic acid content, can increase mesophyll conductance and photosynthesis in C3 cereal crops such as rice. However, attempts to improve photosynthetic WUE will need to enhance mesophyll conductance and photosynthesis while maintaining or decreasing stomatal conductance.

     
    more » « less
  3. Abstract

    Uncertainty about long‐term leaf‐level responses to atmospheric CO2rise is a major knowledge gap that exists because of limited empirical data. Thus, it remains unclear how responses of leaf gas exchange to elevated CO2(eCO2) vary among plant species and functional groups, or across different levels of nutrient supply, and whether they persist over time for long‐lived perennials. Here, we report the effects of eCO2on rates of net photosynthesis and stomatal conductance in 14 perennial grassland species from four functional groups over two decades in a Minnesota Free‐Air CO2Enrichment experiment, BioCON. Monocultures of species belonging to C3grasses, C4grasses, forbs, and legumes were exposed to two levels of CO2and nitrogen supply in factorial combinations over 21 years. eCO2increased photosynthesis by 12.9% on average in C3species, substantially less than model predictions of instantaneous responses based on physiological theory and results of other studies, even those spanning multiple years. Acclimation of photosynthesis to eCO2was observed beginning in the first year and did not strengthen through time. Yet, contrary to expectations, the response of photosynthesis to eCO2was not enhanced by increased nitrogen supply. Differences in responses among herbaceous plant functional groups were modest, with legumes responding the most and C4grasses the least as expected, but did not further diverge over time. Leaf‐level water‐use efficiency increased by 50% under eCO2primarily because of reduced stomatal conductance. Our results imply that enhanced nitrogen supply will not necessarily diminish photosynthetic acclimation to eCO2in nitrogen‐limited systems, and that significant and consistent declines in stomatal conductance and increases in water‐use efficiency under eCO2may allow plants to better withstand drought.

     
    more » « less
  4. Abstract

    The fundamental tradeoff between carbon gain and water loss has long been predicted as an evolutionary driver of plant strategies across environments. Nonetheless, challenges in measuring carbon gain and water loss in ways that integrate over leaf lifetime have limited our understanding of the variation in and mechanistic bases of this tradeoff. Furthermore, the microevolution of plant traits within species versus the macroevolution of strategies among closely related species may not be the same, and accordingly, the latter must be addressed using comparative phylogenetic analyses.

    Here we introduce the concept of ‘integrated metabolic strategy’ (IMS) to describe the ratio between carbon isotope composition (δ13C) and oxygen isotope composition above source water (Δ18O) of leaf cellulose. IMS is a measure of leaf‐level conditions that integrate several mechanisms contributing to carbon gain (δ13C) and water loss (Δ18O) over leaf lifespan, with larger values reflecting higher metabolic efficiency and hence less of a tradeoff. We tested how IMS evolves among closely related yet ecologically diverse milkweed species, and subsequently addressed phenotypic plasticity in response to water availability in species with divergent IMS.

    Integrated metabolic strategy varied strongly among 20Asclepiasspecies when grown under controlled conditions, and phylogenetic analyses demonstrate species‐specific tradeoffs between carbon gain and water loss. Larger IMS values were associated with species from dry habitats, with larger carboxylation capacity, smaller stomatal conductance and smaller leaves; smaller IMS was associated with wet habitats, smaller carboxylation capacity, larger stomatal conductance and larger leaves. The evolution of IMS was dominated by changes in species’ demand for carbon (δ13C) more so than water conservation (Δ18O). Although some individual physiological traits showed phylogenetic signal, IMS did not.

    In response to experimental decreases in soil moisture, three species maintained similar IMS across levels of water availability because of proportional increases inδ13C and Δ18O (or little change in either), while one species increased IMS due to disproportional changes inδ13C relative to Δ18O.

    Synthesis.IMS is a broadly applicable mechanistic tool; IMS variation among and within species may shed light on unresolved questions relating to the evolution and ecology of plant ecophysiological strategies.

     
    more » « less
  5. Zhang, Jianhua (Ed.)
    Abstract The influence of aquaporin (AQP) activity on plant water movement remains unclear, especially in plants subject to unfavorable conditions. We applied a multitiered approach at a range of plant scales to (i) characterize the resistances controlling water transport under drought, flooding, and flooding plus salinity conditions; (ii) quantify the respective effects of AQP activity and xylem structure on root (Kroot), stem (Kstem), and leaf (Kleaf) conductances; and (iii) evaluate the impact of AQP-regulated transport capacity on gas exchange. We found that drought, flooding, and flooding plus salinity reduced Kroot and root AQP activity in Pinus taeda, whereas Kroot of the flood-tolerant Taxodium distichum did not decline under flooding. The extent of the AQP control of transport efficiency varied among organs and species, ranging from 35–55% in Kroot to 10–30% in Kstem and Kleaf. In response to treatments, AQP-mediated inhibition of Kroot rather than changes in xylem acclimation controlled the fluctuations in Kroot. The reduction in stomatal conductance and its sensitivity to vapor pressure deficit were direct responses to decreased whole-plant conductance triggered by lower Kroot and larger resistance belowground. Our results provide new mechanistic and functional insights on plant hydraulics that are essential to quantifying the influences of future stress on ecosystem function. 
    more » « less