skip to main content


Search for: All records

Award ID contains: 2025166

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Hydrologic connectivity refers to the processes and thresholds leading to water transport across a landscape. In dryland ecosystems, runoff production is mediated by the arrangement of vegetation and bare soil patches on hillslopes and the properties of ephemeral channels. In this study, we used runoff measurements at multiple scales in a small (4.67 ha) mixed shrubland catchment of the Chihuahuan Desert to identify controls on and thresholds of hillslope‐channel connectivity. By relating short‐ and long‐term hydrologic records, we also addressed whether observed changes in outlet discharge since 1977 were linked to modifications in hydrologic connectivity. Hillslope runoff production was controlled by the maximum rainfall intensity occurring in a 30‐min interval (I30), with small‐to‐negligible effects of antecedent surface soil moisture, vegetation cover, or slope aspect. AnI30threshold of nearly 10 mm/h activated runoff propagation from the shrubland hillslopes and through the main ephemeral channel, whereas anI30threshold of about 16 mm/h was required for discharge from the catchment outlet. Since storms rarely exceedI30, full hillslope‐channel connectivity occurs infrequently in the mixed shrubland, leading to <2% of the annual precipitation being converted into outlet discharge. Progressive decreases in outlet discharge since 1977 could not be explained by variations in precipitation metrics, includingI30, or the process of woody plant encroachment. Instead, channel modifications from the buildup of sediment behind measurement flumes may have increased transmission losses and reduced outlet discharge. Thus, alterations in channel properties can play an important role in the long‐term (45‐year) variations of rainfall–runoff dynamics of small desert catchments.

     
    more » « less
    Free, publicly-accessible full text available November 27, 2024
  2. Abstract

    A primary challenge in advancing sustainability in rangelands and drylands is the lack of governance systems that are linked to information about highly variable ecosystem conditions. Here, we describe the national‐scale implementation of a resilience‐based management system in the rangelands of Mongolia. The system comprises several interacting elements. Land type‐specific information about rangeland conditions was captured in vegetation state‐and‐transition models (STMs) that allow interpretation of monitoring data and locally tailored restoration recommendations. Rangeland monitoring systems based on standardized protocols were developed and have been adopted by national government agencies, which provide annual, high‐quality data on rangeland conditions on which to base and adjust management decisions. Rangeland use agreements between local governments and herders' collective organizations, called Pasture Users' Groups, define their respective rights and responsibilities and introduce economic and policy incentives for management changes. Pasture Users' Groups also provide a platform for information sharing and collective action. Rangeland condition data and other indicators are linked to the Responsible Nomads product traceability system that provides consumers and industry a means to associate products with sustainable rangeland management practices. The collaboration between national agencies, international donors, scientists, and herders has been essential to initial success, but longer term support and monitoring will be needed to assess whether the adoption of resilience‐based management leads to positive social and ecological outcomes. We draw generalizations and lessons learned from this effort, which can lead to the successful implementation of new management systems across global rangelands.

     
    more » « less
    Free, publicly-accessible full text available October 1, 2024
  3. Abstract

    Multiyear periods (≥4 years) of extreme rainfall are increasing in frequency as climate continues to change, yet there is little understanding of how rainfall amount and heterogeneity in biophysical properties affect state changes in a sequence of wet and dry periods. Our objective was to examine the importance of rainfall periods, their legacies, and vegetation and soil properties to either the persistence of woody plants or a shift toward perennial grass dominance and a state reversal. We examined a 28‐year record of rainfall consisting of a sequence of multiyear periods (average, dry, wet, dry, average) for four ecosystem types in the Jornada Basin. We analyzed relationships between above ground net primary production (ANPP) and rainfall for three plant functional groups that characterize alternative states (perennial grasses, other herbaceous plants, dominant shrubs). A multimodel comparison was used to determine the relative importance of rainfall, soil, and vegetation properties. For perennial grasses, the greatest mean ANPP in mesquite‐ and tarbush‐dominated shrublands occurred in the wet period and in the dry period following the wet period in grasslands. Legacy effects in grasslands were asymmetric, where the lowest production was found in a dry period following an average period, and the greatest production occurred in a dry period following a wet period. For other herbaceous plants, in contrast, the greatest ANPP occurred in the wet period. Mesquite was the only dominant shrub species with a significant positive response in the wet period. Rainfall amount was a poor predictor of ANPP for each functional group when data from all periods were combined. Initial herbaceous biomass at the plant scale, patch‐scale biomass, and soil texture at the landscape scale improved the predictive relationships of ANPP compared with rainfall alone. Under future climate, perennial grass production is expected to benefit the most from wet periods compared with other functional groups with continued high grass production in subsequent dry periods that can shift (desertified) shrublands toward grasslands. The continued dominance by shrubs will depend on the effects that rainfall has on perennial grasses and the sequence of high‐ and low‐rainfall periods rather than the direct effects of rainfall on shrub production.

     
    more » « less
  4. Abstract

    Prediction of abrupt ecosystem transitions resulting from climatic change will be an essential element of adaptation strategies in the coming decades. In the arid southwest USA, the collapse and recovery of long‐lived perennial grasses have important effects on ecosystem services, but the causes of these variations have been poorly understood. Here we use a quality‐controlled vegetation monitoring dataset initiated in 1915 to show that grass cover dynamics during the 20th century were closely correlated to the Pacific decadal oscillation (PDO) index. The relationship out‐performed models correlating grasses to yearly precipitation and drought indices, suggesting that ecosystem transitions attributed only to local disturbances were instead influenced by climate teleconnections. Shifts in PDO phase over time were associated with the persistent loss of core grass species and recovery of transient species, so recovery of grasses in aggregate concealed significant changes in species composition. However, the relationship between PDO and grass cover broke down after 1995; grass cover is consistently lower than PDO would predict. The decoupling of grass cover from the PDO suggests that a threshold had been crossed in which warming or land degradation overwhelmed the ability of any grass species to recover during favorable periods.

     
    more » « less
  5. Abstract

    Diverse bacteria lead a life as pathogens or predators of other bacteria in many environments. However, their impact on emerging ecological processes in natural settings remains to be assessed. Here we describe a novel type of obligate, intracellular predatory bacterium of widespread distribution that preys on soil cyanobacteria in biocrusts. The predator,CandidatusCyanoraptor togatus, causes localized, cm-sized epidemics that are visible to the naked eye, obliterates cyanobacterial net primary productivity, and severely impacts crucial biocrust properties like nitrogen cycling, dust trapping and moisture retention. The combined effects of high localized morbidity and areal incidence result in decreases approaching 10% of biocrust productivity at the ecosystem scale. Our findings show that bacterial predation can be an important loss factor shaping not only the structure but also the function of microbial communities.

     
    more » « less
  6. Abstract

    Janus is the Roman god of transitions. In many environments, state transitions are an important part of our understanding of ecological change. These transitions are controlled by the interactions between exogenous forcing factors and stabilizing endogenous feedbacks. Forcing factors and feedbacks are typically considered to consist of different processes. We argue that during extreme events, a process that usually forms part of a stabilizing feedback can behave as a forcing factor. And thus, like Janus, a single process can have two faces. The case explored here pertains to state change in drylands where interactions between wind erosion and vegetation form an important feedback that encourages grass‐to‐shrub state transitions. Wind concentrates soil resources in shrub‐centered fertile islands, removes resources through loss of fines to favor deep‐rooted shrubs, and abrades grasses' photosynthetic tissue, thus further favoring the shrub state that, in turn, experiences greater aeolian transport. This feedback is well documented but the potential of wind to act also as a forcing has yet to be examined. Extreme wind events have the potential to act like other drivers of state change, such as drought and grazing, to directly reduce grass cover. This study examines the responses of a grass‐shrub community after two extreme wind events in 2019 caused severe deflation. We measured grass cover and root exposure due to deflation, in addition to shrub height, grass patch size, and grass greenness along 50‐m transects across a wide range of grass cover. Root exposure was concentrated in the direction of erosive winds during the storms and sites with low grass cover were associated with increased root exposure and reduced greenness. We argue that differences between extreme, rare wind events and frequent, small wind events are significant enough to be differences in kind rather than differences in degree allowing extreme winds to behave as endogenous forcings and common winds to participate in an endogenous stabilizing feedback. Several types of state change in other ecological systems in are contextualized within this framework.

     
    more » « less
  7. Abstract

    The pulse–reserve paradigm (PRP) is central in dryland ecology, although microorganismal traits were not explicitly considered in its inception. We asked if the PRP could be reframed to encompass organisms both large and small. We used a synthetic review of recent advances in arid land microbial ecology combined with a mathematically explicit theoretical model. Preserving the PRPs core of adaptations by reserve building, the model considers differential organismal strategies to manage these reserves. It proposes a gradient of organisms according to their reserve strategies, from nimble responders (NIRs) to torpid responders (TORs). It predicts how organismal fitness depends on pulse regimes and reserve strategies, partially explaining organismal diversification and distributions. After accounting for scaling phenomena and redefining the microscale meaning of aridity, the evidence shows that the PRP is applicable to microbes. This modified PRP represents an inclusive theoretical framework working across life-forms, although direct testing is still needed.

     
    more » « less
  8. Abstract

    In dryland soils, spatiotemporal variation in surface soils (0–10 cm) plays an important role in the function of the “critical zone” that extends from canopy to groundwater. Understanding connections between soil microbes and biogeochemical cycling in surface soils requires repeated multivariate measurements of nutrients, microbial abundance, and microbial function. We examined these processes in resource islands and interspaces over a two‐month period at a Chihuahuan Desert bajada shrubland site. We collected soil inProsopis glandulosa(honey mesquite),Larrea tridentata(creosote bush), and unvegetated (interspace) areas to measure soil nutrient concentrations, microbial biomass, and potential soil enzyme activity. We monitored the dynamics of these belowground processes as soil conditions dried and then rewetted due to rainfall. Most measured variables, including inorganic nutrients, microbial biomass, and soil enzyme activities, were greater under shrubs during both wet and dry periods, with the highest magnitudes under mesquite followed by creosote bush and then interspace. One exception was nitrate, which was highly variable and did not show resource island patterns. Temporally, rainfall pulses were associated with substantial changes in soil nutrient concentrations, though resource island patterns remained consistent during all phases of the soil moisture pulse. Microbial biomass was more consistent than nutrients, decreasing only when soils were driest. Potential enzyme activities were even more consistent and did not decline in dry periods, potentially helping to stimulate observed pulses in CO2efflux following rain events observed at a co‐located eddy flux tower. These results indicate a critical zone with organic matter cycling patterns consistently elevated in shrub resource islands (which varied by shrub species), high decomposition potential that limits soil organic matter accumulation across the landscape, and nitrate fluxes that are decoupled from the organic matter pathways.

     
    more » « less
  9. Abstract

    The relationship between biodiversity and stability, or its inverse, temporal variability, is multidimensional and complex. Temporal variability in aggregate properties, like total biomass or abundance, is typically lower in communities with higher species diversity (i.e., the diversity–stability relationship [DSR]). At broader spatial extents, regional‐scale aggregate variability is also lower with higher regional diversity (in plant systems) and with lower spatial synchrony. However, focusing exclusively on aggregate properties of communities may overlook potentially destabilizing compositional shifts. It is not yet clear how diversity is related to different components of variability across spatial scales, nor whether regional DSRs emerge across a broad range of organisms and ecosystem types. To test these questions, we compiled a large collection of long‐term metacommunity data spanning a wide range of taxonomic groups (e.g., birds, fish, plants, invertebrates) and ecosystem types (e.g., deserts, forests, oceans). We applied a newly developed quantitative framework for jointly analyzing aggregate and compositional variability across scales. We quantified DSRs for composition and aggregate variability in local communities and metacommunities. At the local scale, more diverse communities were less variable, but this effect was stronger for aggregate than compositional properties. We found no stabilizing effect of γ‐diversity on metacommunity variability, but β‐diversity played a strong role in reducing compositional spatial synchrony, which reduced regional variability. Spatial synchrony differed among taxa, suggesting differences in stabilization by spatial processes. However, metacommunity variability was more strongly driven by local variability than by spatial synchrony. Across a broader range of taxa, our results suggest that high γ‐diversity does not consistently stabilize aggregate properties at regional scales without sufficient spatial β‐diversity to reduce spatial synchrony.

     
    more » « less
  10. Abstract Aims

    Grassland-to-shrubland transition is a common form of land degradation in drylands worldwide. It is often attributed to changes in disturbance regimes, particularly overgrazing. A myriad of direct and indirect effects (e.g., accelerated soil erosion) of grazing may favor shrubs over grasses, but their relative importance is unclear. We tested the hypothesis that topsoil “winnowing” by wind erosion would differentially affect grass and shrub seedling establishment to promote shrub recruitment over that of grass.

    Methods

    We monitored germination and seedling growth of contrasting perennial grass (Bouteloua eriopoda,Sporobolus airoides, andAristida purpurea) and shrub (Prosopis glandulosa,Atriplex canescens, andLarrea tridentata) functional groups on field-collected non-winnowed and winnowed soils under well-watered greenhouse conditions.

    Results

    Non-winnowed soils were finer-textured and had higher nutrient contents than winnowed soils, but based on desorption curves, winnowed soils had more plant-available moisture. Contrary to expectations, seed germination and seedling growth on winnowed and non-winnowed soils were comparable within a given species. The N2-fixing deciduous shrubP. glandulosawas first to emerge and complete germination, and had the greatest biomass accumulation of all species.

    Conclusions

    Germination and early seedling growth of grasses and shrubs on winnowed soils were not adversely nor differentially affected comparing with that observed on non-winnowed soils under well-watered greenhouse conditions. Early germination and rapid growth may giveP. glandulosaa competitive advantage over grasses and other shrub species at the establishment stage in grazed grasslands. Field establishment experiments are needed to confirm our findings in these controlled environment trials.

     
    more » « less