skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Neptune Odyssey: A Flagship Concept for the Exploration of the Neptune–Triton System
Abstract The Neptune Odyssey mission concept is a Flagship-class orbiter and atmospheric probe to the Neptune–Triton system. This bold mission of exploration would orbit an ice-giant planet to study the planet, its rings, small satellites, space environment, and the planet-sized moon Triton. Triton is a captured dwarf planet from the Kuiper Belt, twin of Pluto, and likely ocean world. Odyssey addresses Neptune system-level science, with equal priorities placed on Neptune, its rings, moons, space environment, and Triton. Between Uranus and Neptune, the latter is unique in providing simultaneous access to both an ice giant and a Kuiper Belt dwarf planet. The spacecraft—in a class equivalent to the NASA/ESA/ASI Cassini spacecraft—would launch by 2031 on a Space Launch System or equivalent launch vehicle and utilize a Jupiter gravity assist for a 12 yr cruise to Neptune and a 4 yr prime orbital mission; alternatively a launch after 2031 would have a 16 yr direct-to-Neptune cruise phase. Our solution provides annual launch opportunities and allows for an easy upgrade to the shorter (12 yr) cruise. Odyssey would orbit Neptune retrograde (prograde with respect to Triton), using the moon's gravity to shape the orbital tour and allow coverage of Triton, Neptune, and the space environment. The atmospheric entry probe would descend in ∼37 minutes to the 10 bar pressure level in Neptune's atmosphere just before Odyssey's orbit-insertion engine burn. Odyssey's mission would end by conducting a Cassini-like “Grand Finale,” passing inside the rings and ultimately taking a final great plunge into Neptune's atmosphere.  more » « less
Award ID(s):
2037958
PAR ID:
10476832
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publisher / Repository:
American Astronomical Society
Date Published:
Journal Name:
The Planetary Science Journal
Volume:
2
Issue:
5
ISSN:
2632-3338
Page Range / eLocation ID:
184
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We have detected cometary activity on minor planet 2019 OE31through both theActive AsteroidsCitizen Science program and an independent archival search. Before 2013, 2019 OE31was on a Centaur orbit, between the orbits of Jupiter and Neptune. Centaurs are objects in transition from the outer solar system to the inner solar system. They play a vital role in the understanding of the Kuiper Belt and comets. In 2013 October, following a close encounter with Jupiter, 2019 OE31moved to an orbit entirely interior to that of Jupiter. This reduced orbital distance and, hence, increased temperature is likely the cause of the observed activity. Through a suite of orbital dynamics simulations, we find that 2019 OE31will experience many more similar encounters and is statistically likely to return to a Centaur orbit, potentially within the next 80 yr, from its current “vacation.” 
    more » « less
  2. The sub-Jovian desert is a region in the mass-period and radius-period parameter space that typically encompasses short-period ranges between super-Earths and hot Jupiters, and exhibits an intrinsic dearth of planets. This scarcity is likely shaped by photoevaporation caused by the stellar irradiation received by giant planets that have migrated inward. We report the detection and characterization of TOI-3568 b, a transiting super-Neptune with a mass of 26.4 ± 1.0 M, a radius of 5.30 ± 0.27 R, a bulk density of 0.98 ± 0.15 g cm−3, and an orbital period of 4.417965 (5) d situated in the vicinity of the sub-Jovian desert. This planet orbiting a K dwarf star with solar metallicity was identified photometrically by the Transiting Exoplanet Survey Satellite (TESS). It was characterized as a planet by our high-precision radial-velocity (RV) monitoring program using MAROON-X at Gemini North, supplemented with additional observations from the SPICE large program with SPIRou at CFHT. We performed a Bayesian MCMC joint analysis of the TESS and ground-based photometry, and MAROON-X and SPIRou RVs, to measure the orbit, radius, and mass of the planet, as well as a detailed analysis of the high-resolution flux and polarimetric spectra to determine the physical parameters and elemental abundances of the host star. Our results reveal TOI-3568 b to be a hot super-Neptune rich in hydrogen and helium, with a core of heavier elements of between 10 and 25 Min mass. We analyzed the photoevaporation status of TOI-3568 b and find that it experiences one of the highest extreme-ultraviolet (EUV) luminosities among planets with a mass of Mp< 2 MNep, yet it has an evaporation lifetime exceeding 5 Gyr. Positioned in the transition between two significant populations of exoplanets on the mass-period and energy diagrams, this planet presents an opportunity to test theories concerning the origin of the sub-Jovian desert. 
    more » « less
  3. Abstract We perform an in-depth analysis of the recently validated TOI-3884 system, an M4-dwarf star with a transiting super-Neptune. Using high-precision light curves obtained with the 3.5 m Apache Point Observatory and radial velocity observations with the Habitable-zone Planet Finder, we derive a planetary mass of 32.6 7.4 + 7.3 M and radius of 6.4 ± 0.2R. We detect a distinct starspot crossing event occurring just after ingress and spanning half the transit for every transit. We determine this spot feature to be wavelength dependent with the amplitude and duration evolving slightly over time. Best-fit starspot models show that TOI-3884b possesses a misaligned (λ= 75° ± 10°) orbit that crosses a giant pole spot. This system presents a rare opportunity for studies into the nature of both a misaligned super-Neptune and spot evolution on an active mid-M dwarf. 
    more » « less
  4. Abstract We study the constraining power of a high-precision measurement of the gravity field for Uranus and Neptune, as could be delivered by a low-periapse orbiter. Our study is practical, assessing the possible deliverables and limitations of such a mission with respect to the structure of the planets. Our study is also academic, assessing in a general way the relative importance of the low-order gravity, high-order gravity, rotation rate, and moment of inertia (MOI) in constraining planetary structure. We attempt to explore all possible interior density structures of a planet that are consistent with hypothetical gravity data via MCMC sampling of parameterized density profiles. When the gravity field is poorly known, as it is today, uncertainties in the rotation rate on the order of 10 minutes are unimportant, as they are interchangeable with uncertainties in the gravity coefficients. By the same token, when the gravity field is precisely determined, the rotation rate must be known to comparable precision. When gravity and rotation are well known, the MOI becomes well constrained, limiting the usefulness of independent MOI determinations unless they are extraordinarily precise. For Uranus and Neptune, density profiles can be well constrained. However, the nonuniqueness of the relative roles of H/He, watery volatiles, and rock in the deep interior will still persist with high-precision gravity data. Nevertheless, the locations and magnitudes (in pressure space) of any large-scale composition gradient regions can likely be identified, offering a crucially better picture of the interiors of Uranus or Neptune. 
    more » « less
  5. Abstract Using Fisher information matrices, we forecast the uncertaintiesσMon the measurement of a “Planet X” at heliocentric distancedXvia its tidal gravitational field’s action on the known planets. Using planetary measurements currently in hand, including ranging from the Juno, Cassini, and Mars-orbiting spacecraft, we forecast a median uncertainty (over all sky positions) of σ M = 0.22 M ( d x / 400 au ) 3 . A 5σdetection of a 5MPlanet X atdX= 400 au should be possible over the full sky but over only 5% of the sky atdX= 800 au. The gravity of an undiscovered Earth- or Mars-mass object should be detectable over 90% of the sky to a distance of 260 or 120 au, respectively. Upcoming Mars ranging improves these limits only slightly. We also investigate the power of high-precision astrometry of ≈8000 Jovian Trojans over the 2023–2035 period from the upcoming Legacy Survey of Space and Time (LSST). We find that the dominant systematic errors in optical Trojan astrometry (photocenter motion, nongravitational forces, and differential chromatic refraction) can be solved internally with minimal loss of information. The Trojan data allow cross-checks with Juno/Cassini/Mars ranging, but do not significantly improve the best achievableσMvalues until they are ≳10× more accurate than expected from LSST. The ultimate limiting factor in searches for a Planet X tidal field is confusion with the tidal field created by the fluctuating quadrupole moment of the Kuiper Belt as its members orbit. This background will not, however, become the dominant source of uncertainty until the data get substantially better than they are today. 
    more » « less