Abstract We have detected cometary activity on minor planet 2019 OE31through both theActive AsteroidsCitizen Science program and an independent archival search. Before 2013, 2019 OE31was on a Centaur orbit, between the orbits of Jupiter and Neptune. Centaurs are objects in transition from the outer solar system to the inner solar system. They play a vital role in the understanding of the Kuiper Belt and comets. In 2013 October, following a close encounter with Jupiter, 2019 OE31moved to an orbit entirely interior to that of Jupiter. This reduced orbital distance and, hence, increased temperature is likely the cause of the observed activity. Through a suite of orbital dynamics simulations, we find that 2019 OE31will experience many more similar encounters and is statistically likely to return to a Centaur orbit, potentially within the next 80 yr, from its current “vacation.” 
                        more » 
                        « less   
                    
                            
                            Neptune Odyssey: A Flagship Concept for the Exploration of the Neptune–Triton System
                        
                    
    
            Abstract The Neptune Odyssey mission concept is a Flagship-class orbiter and atmospheric probe to the Neptune–Triton system. This bold mission of exploration would orbit an ice-giant planet to study the planet, its rings, small satellites, space environment, and the planet-sized moon Triton. Triton is a captured dwarf planet from the Kuiper Belt, twin of Pluto, and likely ocean world. Odyssey addresses Neptune system-level science, with equal priorities placed on Neptune, its rings, moons, space environment, and Triton. Between Uranus and Neptune, the latter is unique in providing simultaneous access to both an ice giant and a Kuiper Belt dwarf planet. The spacecraft—in a class equivalent to the NASA/ESA/ASI Cassini spacecraft—would launch by 2031 on a Space Launch System or equivalent launch vehicle and utilize a Jupiter gravity assist for a 12 yr cruise to Neptune and a 4 yr prime orbital mission; alternatively a launch after 2031 would have a 16 yr direct-to-Neptune cruise phase. Our solution provides annual launch opportunities and allows for an easy upgrade to the shorter (12 yr) cruise. Odyssey would orbit Neptune retrograde (prograde with respect to Triton), using the moon's gravity to shape the orbital tour and allow coverage of Triton, Neptune, and the space environment. The atmospheric entry probe would descend in ∼37 minutes to the 10 bar pressure level in Neptune's atmosphere just before Odyssey's orbit-insertion engine burn. Odyssey's mission would end by conducting a Cassini-like “Grand Finale,” passing inside the rings and ultimately taking a final great plunge into Neptune's atmosphere. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2037958
- PAR ID:
- 10476832
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- American Astronomical Society
- Date Published:
- Journal Name:
- The Planetary Science Journal
- Volume:
- 2
- Issue:
- 5
- ISSN:
- 2632-3338
- Page Range / eLocation ID:
- 184
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract We perform an in-depth analysis of the recently validated TOI-3884 system, an M4-dwarf star with a transiting super-Neptune. Using high-precision light curves obtained with the 3.5 m Apache Point Observatory and radial velocity observations with the Habitable-zone Planet Finder, we derive a planetary mass of and radius of 6.4 ± 0.2R⊕. We detect a distinct starspot crossing event occurring just after ingress and spanning half the transit for every transit. We determine this spot feature to be wavelength dependent with the amplitude and duration evolving slightly over time. Best-fit starspot models show that TOI-3884b possesses a misaligned (λ= 75° ± 10°) orbit that crosses a giant pole spot. This system presents a rare opportunity for studies into the nature of both a misaligned super-Neptune and spot evolution on an active mid-M dwarf.more » « less
- 
            Abstract We study the constraining power of a high-precision measurement of the gravity field for Uranus and Neptune, as could be delivered by a low-periapse orbiter. Our study is practical, assessing the possible deliverables and limitations of such a mission with respect to the structure of the planets. Our study is also academic, assessing in a general way the relative importance of the low-order gravity, high-order gravity, rotation rate, and moment of inertia (MOI) in constraining planetary structure. We attempt to explore all possible interior density structures of a planet that are consistent with hypothetical gravity data via MCMC sampling of parameterized density profiles. When the gravity field is poorly known, as it is today, uncertainties in the rotation rate on the order of 10 minutes are unimportant, as they are interchangeable with uncertainties in the gravity coefficients. By the same token, when the gravity field is precisely determined, the rotation rate must be known to comparable precision. When gravity and rotation are well known, the MOI becomes well constrained, limiting the usefulness of independent MOI determinations unless they are extraordinarily precise. For Uranus and Neptune, density profiles can be well constrained. However, the nonuniqueness of the relative roles of H/He, watery volatiles, and rock in the deep interior will still persist with high-precision gravity data. Nevertheless, the locations and magnitudes (in pressure space) of any large-scale composition gradient regions can likely be identified, offering a crucially better picture of the interiors of Uranus or Neptune.more » « less
- 
            Abstract Using Fisher information matrices, we forecast the uncertaintiesσMon the measurement of a “Planet X” at heliocentric distancedXvia its tidal gravitational field’s action on the known planets. Using planetary measurements currently in hand, including ranging from the Juno, Cassini, and Mars-orbiting spacecraft, we forecast a median uncertainty (over all sky positions) of A 5σdetection of a 5M⊕Planet X atdX= 400 au should be possible over the full sky but over only 5% of the sky atdX= 800 au. The gravity of an undiscovered Earth- or Mars-mass object should be detectable over 90% of the sky to a distance of 260 or 120 au, respectively. Upcoming Mars ranging improves these limits only slightly. We also investigate the power of high-precision astrometry of ≈8000 Jovian Trojans over the 2023–2035 period from the upcoming Legacy Survey of Space and Time (LSST). We find that the dominant systematic errors in optical Trojan astrometry (photocenter motion, nongravitational forces, and differential chromatic refraction) can be solved internally with minimal loss of information. The Trojan data allow cross-checks with Juno/Cassini/Mars ranging, but do not significantly improve the best achievableσMvalues until they are ≳10× more accurate than expected from LSST. The ultimate limiting factor in searches for a Planet X tidal field is confusion with the tidal field created by the fluctuating quadrupole moment of the Kuiper Belt as its members orbit. This background will not, however, become the dominant source of uncertainty until the data get substantially better than they are today.more » « less
- 
            Abstract Exoplanet discoveries have revealed a dramatic diversity of planet sizes across a vast array of orbital architectures. Sub-Neptunes are of particular interest; due to their absence in our own solar system, we rely on demographics of exoplanets to better understand their bulk composition and formation scenarios. Here, we present the discovery and characterization of TOI-1437 b, a sub-Neptune with a 18.84 day orbit around a near-solar analog (M⋆= 1.10 ± 0.10M☉,R⋆=1.17 ± 0.12R☉). The planet was detected using photometric data from the Transiting Exoplanet Survey Satellite (TESS) mission and radial velocity (RV) follow-up observations were carried out as a part of the TESS-Keck Survey using both the HIRES instrument at Keck Observatory and the Levy Spectrograph on the Automated Planet Finder telescope. A combined analysis of these data reveal a planet radius ofRp= 2.24 ± 0.23R⊕and a mass measurement ofMp= 9.6 ± 3.9M⊕). TOI-1437 b is one of few (∼50) known transiting sub-Neptunes orbiting a solar-mass star that has a RV mass measurement. As the formation pathway of these worlds remains an unanswered question, the precise mass characterization of TOI-1437 b may provide further insight into this class of planet.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    