skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: NUMERICAL SIMULATION OF TSUNAMI IMPACT FROM THE 1/15/22 ERUPTION OF THE HUNGA TONGA - HUNGA HA’APAI VOLCANO
Tsunamis from volcanic ‘explosive’ eruptions are rare, with the last catastrophic event being Krakatau in 1883 (Verbeek, 1885), during which, tsunamis were generated in the far-field by pressure shock-waves and in the nearfield of the volcano, in the Sunda Straits, by several potential geological mechanisms including pyroclastic flows, ash column, and/or caldera collapse. On 1/22/55, at about 4:15 UTC, a one in 1,000 year eruption of the Hunga Tonga-Hunga Ha’a-pai Volcano (HTHHV), that had started on12/20/21, reached its paroxysm with a series of large underwater explosions, releasing enormous energy (4-18 Mt of TNT), and ejecting a large ash plume 58 km into the stratosphere. We simulate both the near- and far-field tsunami generation from the eruption, but in this paper we focus on analyzing and validating the near-field impact against field data.  more » « less
Award ID(s):
1756665
PAR ID:
10476837
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Coastal Engineering Proceedings, (37), management.85.
Date Published:
Journal Name:
Coastal Engineering Proceedings
Issue:
37
ISSN:
0589-087X
Page Range / eLocation ID:
85
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. The eruption of the Hunga Tonga-Hunga Ha'apai volcano on 15 January 2022 provided a rare opportunity to understand global tsunamiimpacts of explosive volcanism and to evaluate future hazards, includingdangers from “volcanic meteotsunamis” (VMTs) induced by the atmosphericshock waves that followed the eruption. The propagation of the volcanic andmarine tsunamis was analyzed using globally distributed 1 min measurementsof air pressure and water level (WL) (from both tide gauges and deep-waterbuoys). The marine tsunami propagated primarily throughout the Pacific,reaching nearly 2 m at some locations, though most Pacific locationsrecorded maximums lower than 1 m. However, the VMT resulting from theatmospheric shock wave arrived before the marine tsunami and propagatedglobally, producing water level perturbations in the Indian Ocean, theMediterranean, and the Caribbean. The resulting water level response of manyPacific Rim gauges was amplified, likely related to wave interaction withbathymetry. The meteotsunami repeatedly boosted tsunami wave energy as itcircled the planet several times. In some locations, the VMT was amplifiedby as much as 35-fold relative to the inverse barometer due to near-Proudmanresonance and topographic effects. Thus, a meteotsunami from a largereruption (such as the Krakatoa eruption of 1883) could yield atmosphericpressure changes of 10 to 30 mb, yielding a 3–10 m near-field tsunami thatwould occur in advance of (usually) larger marine tsunami waves, posingadditional hazards to local populations. Present tsunami warning systems donot consider this threat. 
    more » « less
  2. The eruption of the Hunga Tonga–Hunga Ha’apai volcano on 15 January 2022 offered a good opportunity to explore the early impacts of tropical volcanic eruptions on stratospheric composition. Balloon-borne observations near Réunion Island revealed the unprecedented amount of water vapor injected by the volcano. The enhanced stratospheric humidity, radiative cooling, and expanded aerosol surface area in the volcanic plume created the ideal conditions for swift ozone depletion of 5% in the tropical stratosphere in just 1 week. The decrease in hydrogen chloride by 0.4 parts per million by volume (ppbv) and the increase in chlorine monoxide by 0.4 ppbv provided compelling evidence for chlorine activation within the volcanic plume. This study enhances our understanding of the effect of this unusual volcanic eruption on stratospheric chemistry and provides insights into possible chemistry changes that may occur in a changing climate. 
    more » « less
  3. Abstract On 15 January 2022, Hunga volcano erupted, creating an extensive and high-reaching umbrella cloud over the open ocean, hindering traditional isopach mapping and fallout volume estimation. In MODIS satellite imagery, ocean surface water was discolored around Hunga following the eruption, which we attribute to ash fallout from the umbrella cloud. By relating intensity of ocean discoloration to fall deposit thicknesses in the Kingdom of Tonga, we develop a methodology for estimating airfall volume over the open ocean. Ash thickness measurements from 41 locations are used to fit a linear relationship between ash thickness and ocean reflectance. This produces a minimum airfall volume estimate of$${1.8}_{-0.4}^{+0.3}$$ 1.8 - 0.4 + 0.3 km3. The whole eruption produced > 6.3 km3of uncompacted pyroclastic material on the seafloor and a caldera volume change of 6 km3DRE. Our fall estimates are consistent with the interpretation that most of the seafloor deposits were emplaced by gravity currents rather than fall deposits. Our proposed method does not account for the largest grain sizes, so is thus a minimum estimate. However, this new ocean-discoloration method provides an airfall volume estimate consistent with other independent measures of the plume and is thus effective for rapidly estimating fallout volumes in future volcanic eruptions over oceans. 
    more » « less
  4. Abstract The Hunga Tonga‐Hunga Ha'apai (Hunga) volcanic eruption in January 2022 injected a substantial amount of water vapor and a moderate amount of SO2into the stratosphere. Both satellite observations in 2022 and subsequent chemistry‐climate model simulations forced by realistic Hunga perturbations reveal large‐scale cooling in the Southern Hemisphere (SH) tropical to subtropical stratosphere following the Hunga eruption. This study analyzes the drivers of this cooling, including the distinctive role of anomalies in water vapor, ozone, and sulfate aerosol concentration on the simulated climate response to the Hunga volcanic forcing, based on climate simulations with prescribed chemistry/aerosol. Simulated circulation and temperature anomalies based on specified‐chemistry simulations show good agreement with previous coupled‐chemistry simulations and indicate that each forcing of ozone, water vapor, and sulfate aerosol from the Hunga volcanic eruption contributed to the circulation and temperature anomalies in the SH stratosphere. Our results also suggest that (a) the large‐scale stratospheric cooling during the austral winter was mainly induced by changes in dynamical processes, not by radiative processes, and that (b) the radiative feedback from negative ozone anomalies contributed to the prolonged cold temperature anomalies in the lower stratosphere (∼70 hPa level) and hence to long lasting cold conditions of the polar vortex. 
    more » « less
  5. SUMMARY The eruption of the submarine Hunga Tonga-Hunga Haʻapai (Hunga Tonga) volcano on 15 January 2022, was one of the largest volcanic explosions recorded by modern geophysical instrumentation. The eruption was notable for the broad range of atmospheric wave phenomena it generated and for their unusual coupling with the oceans and solid Earth. The event was recorded worldwide across the Global Seismographic Network (GSN) by seismometers, microbarographs and infrasound sensors. The broad-band instrumentation in the GSN allows us to make high fidelity observations of spheroidal solid Earth normal modes from this event at frequencies near 3.7 and 4.4 mHz. Similar normal mode excitations were reported following the 1991 Pinatubo (Volcanic Explosivity Index of 6) eruption and were predicted, by theory, to arise from the excitation of mesosphere-scale acoustic modes of the atmosphere coupling with the solid Earth. Here, we compare observations for the Hunga Tonga and Pinatubo eruptions and find that both strongly excited the solid Earth normal mode 0S29 (3.72 mHz). However, the mean modal amplitude was roughly 11 times larger for the 2022 Hunga Tonga eruption. Estimates of attenuation (Q) for 0S29 across the GSN from temporal modal decay give Q = 332 ± 101, which is higher than estimates of Q for this mode using earthquake data (Q = 186.9 ± 5). Two microbarographs located at regional distances (<1000 km) to the volcano provide direct observations of the fundamental acoustic mode of the atmosphere. These pressure oscillations, first observed approximately 40 min after the onset of the eruption, are in phase with the seismic Rayleigh wave excitation and are recorded only by microbarographs in proximity (<1500 km) to the eruption. We infer that excitation of fundamental atmospheric modes occurs within a limited area close to the site of the eruption, where they excite select solid Earth fundamental spheroidal modes of similar frequencies that are globally recorded and have a higher apparent Q due to the extended duration of atmospheric oscillations. 
    more » « less