skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


Title: The Impact of 2022 Hunga Tonga‐Hunga Ha'apai (Hunga) Eruption on Stratospheric Circulation and Climate
Abstract The Hunga Tonga‐Hunga Ha'apai (Hunga) volcanic eruption in January 2022 injected a substantial amount of water vapor and a moderate amount of SO2into the stratosphere. Both satellite observations in 2022 and subsequent chemistry‐climate model simulations forced by realistic Hunga perturbations reveal large‐scale cooling in the Southern Hemisphere (SH) tropical to subtropical stratosphere following the Hunga eruption. This study analyzes the drivers of this cooling, including the distinctive role of anomalies in water vapor, ozone, and sulfate aerosol concentration on the simulated climate response to the Hunga volcanic forcing, based on climate simulations with prescribed chemistry/aerosol. Simulated circulation and temperature anomalies based on specified‐chemistry simulations show good agreement with previous coupled‐chemistry simulations and indicate that each forcing of ozone, water vapor, and sulfate aerosol from the Hunga volcanic eruption contributed to the circulation and temperature anomalies in the SH stratosphere. Our results also suggest that (a) the large‐scale stratospheric cooling during the austral winter was mainly induced by changes in dynamical processes, not by radiative processes, and that (b) the radiative feedback from negative ozone anomalies contributed to the prolonged cold temperature anomalies in the lower stratosphere (∼70 hPa level) and hence to long lasting cold conditions of the polar vortex.  more » « less
Award ID(s):
2316980
PAR ID:
10580999
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Atmospheres
Volume:
130
Issue:
6
ISSN:
2169-897X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The 2022 Hunga volcanic eruption injected a significant quantity of water vapor into the stratosphere while releasing only limited sulfur dioxide. It has been proposed that this excess water vapor could have contributed to global warming, potentially pushing temperatures beyond the 1.5 °C threshold of the Paris Climate Accord. However, given the cooling effects of sulfate aerosols and the contrasting impacts of ozone loss (cooling) versus gain (warming), assessing the eruption’s net radiative effect is essential. Here, we quantify the Hunga-induced perturbations in stratospheric water vapor, sulfate aerosols, and ozone using satellite observations and radiative transfer simulations. Our analysis shows that these components induce clear-sky instantaneous net radiative energy losses at both the top of the atmosphere and near the tropopause. In 2022, the Southern Hemisphere experienced a radiative forcing of −0.55 ± 0.05 W m⁻² at the top of the atmosphere and −0.52 ± 0.05 W m⁻² near the tropopause. By 2023, these values decreased to −0.26 ± 0.04 W m⁻² and −0.25 ± 0.04 W m⁻², respectively. Employing a two-layer energy balance model, we estimate that these losses resulted in cooling of about −0.10 ± 0.02 K in the Southern Hemisphere by the end of 2022 and 2023. Thus, we conclude that the Hunga eruption cooled rather than warmed the Southern Hemisphere during this period. 
    more » « less
  2. The eruption of the Hunga Tonga–Hunga Ha’apai volcano on 15 January 2022 offered a good opportunity to explore the early impacts of tropical volcanic eruptions on stratospheric composition. Balloon-borne observations near Réunion Island revealed the unprecedented amount of water vapor injected by the volcano. The enhanced stratospheric humidity, radiative cooling, and expanded aerosol surface area in the volcanic plume created the ideal conditions for swift ozone depletion of 5% in the tropical stratosphere in just 1 week. The decrease in hydrogen chloride by 0.4 parts per million by volume (ppbv) and the increase in chlorine monoxide by 0.4 ppbv provided compelling evidence for chlorine activation within the volcanic plume. This study enhances our understanding of the effect of this unusual volcanic eruption on stratospheric chemistry and provides insights into possible chemistry changes that may occur in a changing climate. 
    more » « less
  3. Abstract Aerosol from the Hunga Tonga‐Hunga Ha'apai (HT‐HH) volcanic eruption (20.6°S) in January 2022 were not incorporated into the austral polar vortex until the following year, March 2023. Within the polar vortex in situ profiles of aerosol size spectra were completed in the austral autumns of 2019 and 2023, from McMurdo Station, Antarctica (78˚S), 30 months prior to and 15 months after the HT‐HH eruption. The measurements indicate that the HT‐HH impact on aerosol size was primarily confined to particles with diameters >0.5 μm leading to differences in aerosol mass, surface area, and extinction from factors of 2–4 at the volcanic layer's peak below 20 km, increasing to ratios of 5–10 above 20 km. Effective radius, with radiative and microphysical implications, increased from ∼0.2 to ∼0.3 μm. An Earth system model with a modal aerosol package compares favorably with the in situ measurements of the HT‐HH aerosol impact. 
    more » « less
  4. Abstract We report on observed trend anomalies in climate-relevant global ocean biogeochemical properties, as derived from satellite ocean color measurements, that show a substantial decline in phytoplankton carbon concentrations following eruptions of the submarine volcano Hunga Tonga-Hunga Ha’apai in January 2022. The anomalies are seen in remotely-sensed ocean color data sets from multiple satellite missions, but not in situ observations, thus suggesting that the observed anomalies are a result of ocean color retrieval errors rather than indicators of a major shift in phytoplankton carbon concentrations. The enhanced concentration of aerosols in the stratosphere following the eruptions results in a violation of some fundamental assumptions in the processing algorithms used to obtain marine biogeochemical properties from satellite radiometric observations, and it is demonstrated through radiative transfer simulations that this is the likely cause of the anomalous trends. We note that any future stratospheric aerosol disturbances, either natural or geoengineered, may lead to similar artifacts in satellite ocean color and other remote-sensing measurements of the marine environment, thus confounding our ability to track the impact of such events on ocean ecosystems. 
    more » « less
  5. Abstract Following the Hunga Tonga–Hunga Ha'apai (HTHH) eruption in January 2022, significant reductions in stratospheric hydrochloric acid (HCl) were observed in the Southern Hemisphere mid‐latitudes during the latter half of 2022, suggesting potential chlorine activation. The objective of this study is to comprehensively understand the loss of HCl in the aftermath of HTHH. Satellite measurements and a global chemistry‐climate model are employed for the analysis. We find strong agreement of 2022 anomalies between the modeled and the measured data. The observed tracer‐tracer relations between nitrous oxide (N2O) and HCl indicate a significant role of chemical processing in the observed HCl reduction, especially during the austral winter of 2022. Further examining the roles of chlorine gas‐phase and heterogeneous chemistry, we find that heterogeneous chemistry emerges as the primary driver for the chemical loss of HCl, and the reaction between hypobromous acid (HOBr) and HCl on sulfate aerosols is the dominant loss process. 
    more » « less