Abstract High alpine regions are threatened but understudied ecosystems that harbor diverse endemic species, making them an important biome for testing the role of environmental factors in driving functional trait‐mediated community assembly processes. We tested the hypothesis that plant community assembly along a climatic and elevation gradient is influenced by shifts in habitat suitability, which drive plant functional, phylogenetic, and spectral diversity. In a high mountain system (2400–3500 m) Región Metropolitana in the central Chilean Andes (33°S, 70°W). We surveyed vegetation and spectroscopic reflectance (400–2400 nm) to quantify taxonomic, phylogenetic, functional, and spectral diversity at five sites from 2400 to 3500 m elevation. We characterized soil attributes and processes by measuring water content, carbon and nitrogen, and net nitrogen mineralization rates. At high elevation, colder temperatures reduced available soil nitrogen, while at warmer, lower elevations, soil moisture was lower. Metrics of taxonomic, functional, and spectral alpha diversity peaked at mid‐elevations, while phylogenetic species richness was highest at low elevation. Leaf nitrogen increased with elevation at the community level and within individual species, consistent with global patterns of increasing leaf nitrogen with colder temperatures. The increase in leaf nitrogen, coupled with shifts in taxonomic and functional diversity associated with turnover in lineages, indicate that the ability to acquire and retain nitrogen in colder temperatures may be important in plant community assembly in this range. Such environmental filters have important implications for forecasting shifts in alpine plant communities under a warming climate.
more »
« less
Making remote sense of biodiversity: What grassland characteristics make spectral diversity a good proxy for taxonomic diversity?
Abstract AimThe spectral variability hypothesis (SVH) predicts that spectral diversity, defined as the variability of radiation reflected from vegetation, increases with biodiversity. While confirmation of this hypothesis would pave the path for use of remote sensing to monitor biodiversity, support in herbaceous ecosystems is mixed. Methodological aspects related to scale have been the predominant explanation for the mixed support, yet biological characteristics that vary among herbaceous systems may also affect the strength of the relationship. Therefore, we examined the influence of three biological characteristics on the relationship between spectral and taxonomic diversity: vegetation density, spatial species turnover and invasion by non‐native species. We aimed to understand when and why spectral diversity may serve as an indicator of taxonomic diversity and be useful for monitoring. LocationContinental U.S.A. Time PeriodPeak greenness in 2017. Major Taxa StudiedGrassland and herbaceous ecosystems. MethodsFor nine herbaceous sites in the National Ecological Observatory Network, we calculated taxonomic diversity from field surveys of 20 m × 20 m plots and derived spectral diversity for those same plots from airborne hyperspectral imagery with a spatial resolution of 1 m. The strength of the taxonomic diversity–spectral diversity relationship at each site was subsequently assessed against measurements of vegetation density, spatial species turnover and invasion. ResultsWe found a significant relationship between taxonomic and spectral diversity at some, but not all, sites. Spectral diversity was more strongly related to taxonomic diversity in sites with high species turnover and low invasion, but vegetation density had no effect on the relationship. Main ConclusionsUsing spectral diversity as a proxy for taxonomic diversity in grasslands is possible in some circumstances but should not just be assumed based on the SVH. It is important to understand the biological characteristics of a community prior to considering spectral diversity to monitor taxonomic diversity.
more »
« less
- PAR ID:
- 10476933
- Publisher / Repository:
- John Wiley & Sons Ltd
- Date Published:
- Journal Name:
- Global Ecology and Biogeography
- Volume:
- 32
- Issue:
- 12
- ISSN:
- 1466-822X
- Page Range / eLocation ID:
- 2177 to 2188
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract AimUnderstanding the mechanisms promoting resilience in plant communities is crucial in times of increasing disturbance and global environmental change. Here, we present the first meta‐analysis evaluating the relationship between functional diversity and resilience of plant communities. Specifically, we tested whether the resilience of plant communities is positively correlated with interspecific trait variation (following the niche complementarity hypothesis) and the dominance of acquisitive and small‐size species (following the mass ratio hypothesis), and for the context‐dependent effects of ecological and methodological differences across studies. LocationGlobal. Time Period2004–2021. Major Taxa StudiedVascular plants. MethodsWe compiled a dataset of 69 independent sites from 26 studies that have quantified resilience. For each site, we calculated functional diversity indices based on the floristic composition and functional traits of the plant community (obtained from the TRY database) which we correlated with resilience of biomass and floristic composition. After transforming correlation coefficients to Fisher'sZ‐scores, we conducted a hierarchical meta‐analysis, using a multilevel random‐effects model that accounted for the non‐independence of multiple effect sizes and the effects of ecological and methodological moderators. ResultsIn general, we found no positive functional diversity–resilience relationships of grand mean effect sizes. In contrast to our expectations, we encountered a negative relationship between resilience and trait variety, especially in woody ecosystems, whereas there was a positive relationship between resilience and the dominance of acquisitive species in herbaceous ecosystems. Finally, the functional diversity–resilience relationships were strongly affected by both ecological (biome and disturbance properties) and methodological (temporal scale, study design and resilience metric) characteristics. Main ConclusionsWe rejected our hypothesis of a general positive functional diversity–resilience relationship. In addition to strong context dependency, we propose that idiosyncratic effects of single resident species present in the communities before the disturbances and biological legacies could play major roles in the resilience of terrestrial plant communities.more » « less
-
Abstract Efforts to catalog global biodiversity have often focused on aboveground taxonomic diversity, with limited consideration of belowground communities. However, diversity aboveground may influence the diversity of belowground communities and vice versa. In addition to taxonomic diversity, the structural diversity of plant communities may be related to the diversity of soil bacterial and fungal communities, which drive important ecosystem processes but are difficult to characterize across broad spatial scales. In forests, canopy structural diversity may influence soil microorganisms through its effects on ecosystem productivity and root architecture, and via associations between canopy structure, stand age, and species richness. Given that structural diversity is one of the few types of diversity that can be readily measured remotely (e.g., using light detection and ranging—LiDAR), establishing links between structural and microbial diversity could facilitate the detection of belowground biodiversity hotspots. We investigated the potential for using remotely sensed information about forest structural diversity as a predictor of soil microbial community richness and composition. We calculated LiDAR‐derived metrics of structural diversity as well as a suite of stand and soil properties from 38 forested plots across the central hardwoods region of Indiana, USA, to test whether forest canopy structure is linked with the community richness and diversity of four key soil microbial groups: bacteria, fungi, arbuscular mycorrhizal (AM) fungi, and ectomycorrhizal (EM) fungi. We found that the density of canopy vegetation is positively associated with the taxonomic richness (alpha diversity) of EM fungi, independent of changes in plant taxonomic richness. Further, structural diversity metrics were significantly correlated with the overall community composition of bacteria, EM, and total fungal communities. However, soil properties were the strongest predictors of variation in the taxonomic richness and community composition of microbial communities in comparison with structural diversity and tree species diversity. As remote sensing tools and algorithms are rapidly advancing, these results may have important implications for the use of remote sensing of vegetation structural diversity for management and restoration practices aimed at preserving belowground biodiversity.more » « less
-
ABSTRACT AimBeta diversity quantifies the similarity of ecological assemblages. Its increase, known as biotic homogenisation, can be a consequence of biological invasions. However, species occurrence (presence/absence) and abundance‐based analyses can produce contradictory assessments of the magnitude and direction of changes in beta diversity. Previous work indicates these contradictions should be less frequent in nature than in theory, but a growing number of empirical studies report discrepancies between occurrence‐ and abundance‐based approaches. Understanding if these discrepancies represent a few isolated cases or are systematic across a diversity of ecosystems would allow us to better understand the general patterns, mechanisms and impacts of biotic homogenisation. LocationUnited States. Time Period1963–2020. Major Taxa StudiedVascular plants. MethodsWe used a dataset of more than 70,000 vegetation survey plots to assess differences in biotic homogenisation with and without invasion using both occurrence‐ and abundance‐based metrics of beta diversity. We estimated taxonomic biotic homogenisation by comparing beta diversity of invaded and uninvaded plots with both classes of metrics and investigated the characteristics of the non‐native species pool that influenced the likelihood that these metrics disagree. ResultsIn 78% of plot comparisons, occurrence‐ and abundance‐based calculations agreed in direction, and the two metrics were generally well correlated. Our empirical results are consistent with previous theory. Discrepancies between the metrics were more likely when the same non‐native species was at high cover at both plots compared for beta diversity, and when these plots were spatially distant. Main ConclusionsIn about 20% of cases, our calculations revealed differences in direction (homogenisation vs. differentiation) when comparing occurrence‐ and abundance‐based metrics, indicating that the metrics are not interchangeable, especially when distances between plots are high and invader diversity is low. When data permit, combining the two approaches can offer insights into the role of invasions and extirpations in driving biotic homogenisation/differentiation.more » « less
-
None (Ed.)Abstract AimEvaluate the temporal changes in species diversity, composition, and structure of ephemeral plant communities and the seed bank in response to long‐term herbivore exclusion over 11 years in plots with and without herbivores. LocationNorth‐central Chile. MethodsWe obtained information on ephemeral vegetation cover in August and September using the intercept point method and recorded seed abundance in April. The Bosque Fray Jorge National Park Long‐Term Socio‐Ecological Research (LTSER) provided these records covering 11 years (2009–2019). From the original experiment of 20 plots, we used eight plots divided into two treatments: four plots allowed free access to all herbivores (with herbivores), while the other four plots excluded herbivores (without herbivores). ResultsWe found that Hill–Shannon diversity increased in plant communities with herbivores and a temporal increase in the cover of the dominant species,Plantago hispidula, under herbivore exclusion. In wet years, species richness and temporal turnover of plant communities increased independently of treatment. Although seed abundance differed among treatments and years, population structure remained constant over time and among treatments, suggesting that the seed bank acts as a buffer against shocks that modify plant community dynamics. Structural equation modeling revealed that precipitation, via its positive effects onPlantago hispidula, increases native plant richness to a greater extent than herbivores. However, in the absence of herbivores, precipitation directly affects native species richness. Moreover, we found that precipitation also influences the native species richness of the seed bank, both directly and indirectly, although its impacts exhibit a time lag. ConclusionsOur study demonstrates that the temporal dynamics of ephemeral plant communities and seed banks in semi‐arid ecosystems are strongly coupled to climate variability, highlighting the vulnerability of these communities to biodiversity loss and climate change.more » « less
An official website of the United States government

