Introduction In dryland systems, biological soil crusts (biocrusts) can occupy large areas of plant interspaces, where they fix carbon following rain. Although distinct biocrust types contain different dominant photoautotrophs, few studies to date have documented carbon exchange over time from various biocrust types. This is especially true for gypsum soils. Our objective was to assess the carbon exchange of biocrust types established at the world’s largest gypsum dune field at White Sands National Park. Methods We sampled five different biocrust types from a sand sheet location in three different years and seasons (summer 2020, fall 2021, and winter 2022) for carbon exchange measurements in controlled lab conditions. Biocrusts were rehydrated to full saturation and light incubated for 30 min, 2, 6, 12, 24, and 36 h. Samples were then subject to a 12-point light regime with a LI-6400XT photosynthesis system to determine carbon exchange. Results Biocrust carbon exchange values differed by biocrust type, by incubation time since wetting, and by date of field sampling. Lichens and mosses had higher gross and net carbon fixation rates than dark and light cyanobacterial crusts. High respiration rates were found after 0.5 h and 2 h incubation times as communities recovered from desiccation, leveling off after 6 h incubation. Net carbon fixation of all types increased with longer incubation time, primarily as a result of decreasing respiration, which suggests rapid recovery of biocrust photosynthesis across types. However, net carbon fixation rates varied from year to year, likely as a product of time since the last rain event and environmental conditions preceding collection, with moss crusts being most sensitive to environmental stress at our study sites. Discussion Given the complexity of patterns discovered in our study, it is especially important to consider a multitude of factors when comparing biocrust carbon exchange rates across studies. Understanding the dynamics of biocrust carbon fixation in distinct crust types will enable greater precision of carbon cycling models and improved forecasting of impacts of global climate change on dryland carbon cycling and ecosystem functioning.
more »
« less
Carbon exchange responses of rehydrated and incubated biological soil crust samples from White Sands National Park in 2020-2022
This dataset contains photosynthetic light response data from biological soil crusts collected from a gypsum sand sheet at White Sands National Park, NM, USA in three different seasons. This study aims to 1) assess the carbon fixation capacity of biocrust types; 2) assess biocrust carbon fixation response under varying incubation times; 3) and understand variability in carbon fixation response in different seasons. Sample collection occurred in July 2020 (summer), September 2021 (fall), and March 2022 (winter). The biocrust types of interest were light cyanobacterial, dark cyanobacterial, Peltula lichen, Clavascidium lichen, and moss crusts. Samples were collected with the intention of taking carbon fixation measurements after different incubation periods (30 min, 2 hr, 6 hr, 12hr, or 24 hr in 2020, and 30 min, 2 hr, 6 hr, 12hr, 24 hr, or 36 hr in 2021 and 2022). For each condition (biocrust type and incubation time) there were five replicates in 2020 (total n=125) and ten replicates in 2021 and 2022 (total n=300). After collection, the intact samples were re-wetted and subjected to their respective incubation period and measured for photosynthetic response. The resulting light response curves and photosynthetic information was be used for comparing biocrust type, incubation time response differences, and seasonal variation to understand variability of biocrust carbon flux response at a single site. This data set includes the light response curve values and photosynthetic data calculated from these curves and raw LICOR output files compiled into 3 spreadsheet files. The included 2020 data is also associated with the White Sands National Park data from Jornada Study 549. This dataset accompanies the in-press article by Hoellrich et al. (2023) cited below, and the study is now complete. Hoellrich, Mikaela R., Darren K. James, David Bustos, Anthony Darrouzet-Nardi, Louis S. Santiago, and Nicole Pietrasiak. "Biocrust carbon exchange varies with crust type and time on Chihuahuan Desert gypsum soils." Frontiers in Microbiology 14:1128631.
more »
« less
- Award ID(s):
- 2025166
- PAR ID:
- 10476953
- Publisher / Repository:
- Environmental Data Initiative
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Biological soil crusts (biocrusts) are critical components of dryland and other ecosystems worldwide, and are increasingly recognized as novel model ecosystems from which more general principles of ecology can be elucidated. Biocrusts are often diverse communities, comprised of both eukaryotic and prokaryotic organisms with a range of metabolic lifestyles that enable the fixation of atmospheric carbon and nitrogen. However, how the function of these biocrust communities varies with succession is incompletely characterized, especially in comparison to more familiar terrestrial ecosystem types such as forests. We conducted a greenhouse experiment to investigate how community composition and soil-atmosphere trace gas fluxes of CO2, CH4, and N2O varied from early-successional light cyanobacterial biocrusts to mid-successional dark cyanobacteria biocrusts and late-successional moss-lichen biocrusts and as biocrusts of each successional stage matured. Cover type richness increased as biocrusts developed, and richness was generally highest in the late-successional moss-lichen biocrusts. Microbial community composition varied in relation to successional stage, but microbial diversity did not differ significantly among stages. Net photosynthetic uptake of CO2by each biocrust type also increased as biocrusts developed but tended to be moderately greater (by up to ≈25%) for the mid-successional dark cyanobacteria biocrusts than the light cyanobacterial biocrusts or the moss-lichen biocrusts. Rates of soil C accumulation were highest for the dark cyanobacteria biocrusts and light cyanobacteria biocrusts, and lowest for the moss-lichen biocrusts and bare soil controls. Biocrust CH4and N2O fluxes were not consistently distinguishable from the same fluxes measured from bare soil controls; the measured rates were also substantially lower than have been reported in previous biocrust studies. Our experiment, which uniquely used greenhouse-grown biocrusts to manipulate community composition and accelerate biocrust development, shows how biocrust function varies along a dynamic gradient of biocrust successional stages.more » « less
-
This dataset contains raw and calculated percent cover and frequency data for biological soil crust (hereafter biocrust) functional groups, vascular plant functional groups, and abiotic land surface features on and off gypsum soils in the northern Chihuahuan and eastern Mojave Deserts. Abundance data were obtained from 20 study sites total, 10 located on soils derived from gypsum parent material and 10 located on soils derived from non-gypsum parent materials. Sites were grouped into 10 pairs, in which every gypsum site was partnered with a non-gypsum site located in the same region. Apart from soil type, partnered-site characteristics (topography, climate, elevation, slope, aspect, and presence of biocrusts) were held relatively constant. At each site, cover and frequency assessments were made using the line-point intercept method (LPI) and frequency quadrats (1.0 m^2), respectively. Biocrust functional groups included the following crusts: lichen, moss, incipient algal, light algal, dark algal, unknown photosynthetic crust, and vagrant cyanobacteria. Vascular plant categories included: perennial forbs, perennial graminoids, annual forbs, annual graminoids, subshrub, shrub, Yucca, and cacti. Abiotic land surface features included: woody litter, herbaceous litter, bare soil, rock, bedrock, and animal feces. Moss crusts identified within cover and frequency analyses were sampled, and classified to species level via microscopy. The resulting percent cover and frequency data was used to understand differences in biocrust and moss species abundance and diversity on and off gypsum soils; furthermore, how biocrust and moss species abundance was associated with the measured environmental variables. Soil physical and chemical data from this study can be accessed at knb-lter-jrn.210616002. This study and dataset are complete.more » « less
-
Abstract Carbon‐concentrating mechanisms (CCMs) are a widespread phenomenon in photosynthetic organisms. In vascular plants, the evolution of CCMs ([C44‐carbon compound] and crassulacean acid metabolism [CAM]) is associated with significant shifts, most often to hot, dry and bright, or aquatic environments. If and how CCMs drive distributions of other terrestrial photosynthetic organisms, remains little studied. Lichens are ecologically important obligate symbioses between fungi and photosynthetic organisms. The primary photosynthetic partner in these symbioses can include CCM‐presenting cyanobacteria (as carboxysomes), CCM‐presenting green algae (as pyrenoids) or green algae lacking any CCM. We use an extensive dataset of lichen communities from eastern North America, spanning a wide climatic range, to test the importance of CCMs as predictors of lichen ecology and distribution. We show that the presence or absence of CCMs leads to opposite responses to temperature and precipitation in green algal lichens, and different responses in cyanobacterial lichens. These responses contrast with our understanding of lichen physiology, whereby CCMs mitigate carbon limitation by water saturation at the cost of efficient use of vapor hydration. This study demonstrates that CCM status is a key functional trait in obligate lichen symbioses, equivalent in importance to its role in vascular plants, and central for studying present and future climate responses.more » « less
-
Stams, Alfons J. (Ed.)ABSTRACT Biological soil crusts (biocrusts) are communities of microbes that inhabit the surface of arid soils and provide essential services to dryland ecosystems. While resistant to extreme environmental conditions, biocrusts are susceptible to anthropogenic disturbances that can deprive ecosystems of these valuable services for decades. Until recently, culture-based efforts to produce inoculum for cyanobacterial biocrust restoration in the southwestern United States focused on producing and inoculating the most abundant primary producers and biocrust pioneers, Microcoleus vaginatus and members of the family Coleofasciculaceae (also called Microcoleus steenstrupii complex). The discovery that a unique microbial community characterized by diazotrophs, known as the cyanosphere, is intimately associated with M. vaginatus suggests a symbiotic division of labor in which nutrients are traded between phototrophs and heterotrophs. To probe the potential use of such cyanosphere members in the restoration of biocrusts, we performed coinoculations of soil substrates with cyanosphere constituents. This resulted in cyanobacterial growth that was more rapid than that seen for inoculations with the cyanobacterium alone. Additionally, we found that the mere addition of beneficial heterotrophs enhanced the formation of a cohesive biocrust without the need for additional phototrophic biomass within native soils that contain trace amounts of biocrust cyanobacteria. Our findings support the hitherto-unknown role of beneficial heterotrophic bacteria in the establishment and growth of biocrusts and allow us to make recommendations concerning biocrust restoration efforts based on the presence of remnant biocrust communities in disturbed areas. Future biocrust restoration efforts should consider cyanobacteria and their beneficial heterotrophic community as inoculants. IMPORTANCE The advancement of biocrust restoration methods for cyanobacterial biocrusts has been largely achieved through trial and error. Successes and failures could not always be traced back to particular factors. The investigation and application of foundational microbial interactions existing within biocrust communities constitute a crucial step toward informed and repeatable biocrust restoration methods.more » « less
An official website of the United States government
