skip to main content


Title: The Preexplosion Environments and the Progenitor of SN 2023ixf from the Hobby–Eberly Telescope Dark Energy Experiment (HETDEX)
Abstract

Supernova (SN) 2023ixf was discovered on 2023 May 19. The host galaxy, M101, was observed by the Hobby–Eberly Telescope Dark Energy Experiment collaboration over the period 2020 April 30–2020 July 10, using the Visible Integral-field Replicable Unit Spectrograph (3470 ≲λ≲ 5540 Å) on the 10 m Hobby–Eberly Telescope. The fiber filling factor within ±30″ of SN 2023ixf is 80% with a spatial resolution of 1″. Ther< 5.″5 surroundings are 100% covered. This allows us to analyze the spatially resolved preexplosion local environments of SN 2023ixf with nebular emission lines. The two-dimensional maps of the extinction and the star formation rate (SFR) surface density (ΣSFR) show weak increasing trends in the radial distributions within ther< 5.″5 regions, suggesting lower values of extinction and SFR in the vicinity of the progenitor of SN 2023ixf. The median extinction and that of the surface density of SFR withinr< 3″ areE(BV) = 0.06 ± 0.14, andΣSFR=105.44±0.66Myr1arcsec2.There is no significant change in extinction before and after the explosion. The gas metallicity does not change significantly with the separation from SN 2023ixf. The metal-rich branch of theR23calculations indicates that the gas metallicity around SN 2023ixf is similar to the solar metallicity (∼Z). The archival deep images from the Canada–France–Hawaii Telescope Legacy Survey (CFHTLS) show a clear detection of the progenitor of SN 2023ixf in thezband at 22.778 ± 0.063 mag, but nondetections in the remaining four bands of CFHTLS (u,g,r,i). The results suggest a massive progenitor of ≈22M.

 
more » « less
NSF-PAR ID:
10477081
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; « less
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal Letters
Volume:
958
Issue:
2
ISSN:
2041-8205
Format(s):
Medium: X Size: Article No. L37
Size(s):
Article No. L37
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We present UV and/or optical observations and models of SN 2023ixf, a type II supernova (SN) located in Messier 101 at 6.9 Mpc. Early time (flash) spectroscopy of SN 2023ixf, obtained primarily at Lick Observatory, reveals emission lines of Hi, Hei/ii, Civ, and Niii/iv/vwith a narrow core and broad, symmetric wings arising from the photoionization of dense, close-in circumstellar material (CSM) located around the progenitor star prior to shock breakout. These electron-scattering broadened line profiles persist for ∼8 days with respect to first light, at which time Doppler broadened the features from the fastest SN ejecta form, suggesting a reduction in CSM density atr≳ 1015cm. The early time light curve of SN 2023ixf shows peak absolute magnitudes (e.g.,Mu= −18.6 mag,Mg= −18.4 mag) that are ≳2 mag brighter than typical type II SNe, this photometric boost also being consistent with the shock power supplied from CSM interaction. Comparison of SN 2023ixf to a grid of light-curve and multiepoch spectral models from the non-LTE radiative transfer codeCMFGENand the radiation-hydrodynamics codeHERACLESsuggests dense, solar-metallicity CSM confined tor= (0.5–1) × 1015cm, and a progenitor mass-loss rate ofṀ=102Myr−1. For the assumed progenitor wind velocity ofvw= 50 km s−1, this corresponds to enhanced mass loss (i.e.,superwindphase) during the last ∼3–6 yr before explosion.

     
    more » « less
  2. Abstract

    We investigate the stellar mass–black hole mass (*BH) relation with type 1 active galactic nuclei (AGNs) down toBH=107M, corresponding to a ≃ −21 absolute magnitude in rest-frame ultraviolet, atz= 2–2.5. Exploiting the deep and large-area spectroscopic survey of the Hobby–Eberly Telescope Dark Energy Experiment (HETDEX), we identify 66 type 1 AGNs withBHranging from 107–1010Mthat are measured with single-epoch virial method using Civemission lines detected in the HETDEX spectra.*of the host galaxies are estimated from optical to near-infrared photometric data taken with Spitzer, the Wide-field Infrared Survey Explorer, and ground-based 4–8 m class telescopes byCIGALEspectral energy distribution (SED) fitting. We further assess the validity of SED fitting in two cases by host-nuclear decomposition performed through surface brightness profile fitting on spatially resolved host galaxies with the James Webb Space Telescope/NIRCam CEERS data. We obtain the*BHrelation covering the unexplored low-mass ranges ofBH107108M, and conduct forward modeling to fully account for the selection biases and observational uncertainties. The intrinsic*BHrelation atz∼ 2 has a moderate positive offset of 0.52 ± 0.14 dex from the local relation, suggestive of more efficient black hole growth at higher redshift even in the low-mass regime ofBH107108M. Our*BHrelation is inconsistent with theBHsuppression at the low-*regime predicted by recent hydrodynamic simulations at a 98% confidence level, suggesting that feedback in the low-mass systems may be weaker than those produced in hydrodynamic simulations.

     
    more » « less
  3. Abstract

    We present maps tracing the fraction of dust in the form of polycyclic aromatic hydrocarbons (PAHs) in IC 5332, NGC 628, NGC 1365, and NGC 7496 from JWST/MIRI observations. We trace the PAH fraction by combining the F770W (7.7μm) and F1130W (11.3μm) filters to track ionized and neutral PAH emission, respectively, and comparing the PAH emission to F2100W, which traces small, hot dust grains. We find the averageRPAH= (F770W + F1130W)/F2100W values of 3.3, 4.7, 5.1, and 3.6 in IC 5332, NGC 628, NGC 1365, and NGC 7496, respectively. We find that Hiiregions traced by MUSE Hαshow a systematically low PAH fraction. The PAH fraction remains relatively constant across other galactic environments, with slight variations. We use CO+Hi+Hαto trace the interstellar gas phase and find that the PAH fraction decreases above a value ofIHα/ΣHI+H21037.5ergs1kpc2(Mpc2)1in all four galaxies. Radial profiles also show a decreasing PAH fraction with increasing radius, correlated with lower metallicity, in line with previous results showing a strong metallicity dependence to the PAH fraction. Our results suggest that the process of PAH destruction in ionized gas operates similarly across the four targets.

     
    more » « less
  4. Abstract

    We measure the CO-to-H2conversion factor (αCO) in 37 galaxies at 2 kpc resolution, using the dust surface density inferred from far-infrared emission as a tracer of the gas surface density and assuming a constant dust-to-metal ratio. In total, we have ∼790 and ∼610 independent measurements ofαCOfor CO (2–1) and (1–0), respectively. The mean values forαCO (2–1)andαCO (1–0)are9.35.4+4.6and4.22.0+1.9Mpc2(Kkms1)1, respectively. The CO-intensity-weighted mean is 5.69 forαCO (2–1)and 3.33 forαCO (1–0). We examine howαCOscales with several physical quantities, e.g., the star formation rate (SFR), stellar mass, and dust-mass-weighted average interstellar radiation field strength (U¯). Among them,U¯, ΣSFR, and the integrated CO intensity (WCO) have the strongest anticorrelation with spatially resolvedαCO. We provide linear regression results toαCOfor all quantities tested. At galaxy-integrated scales, we observe significant correlations betweenαCOandWCO, metallicity,U¯, and ΣSFR. We also find thatαCOin each galaxy decreases with the stellar mass surface density (Σ) in high-surface-density regions (Σ≥ 100Mpc−2), following the power-law relationsαCO(21)Σ0.5andαCO(10)Σ0.2. The power-law index is insensitive to the assumed dust-to-metal ratio. We interpret the decrease inαCOwith increasing Σas a result of higher velocity dispersion compared to isolated, self-gravitating clouds due to the additional gravitational force from stellar sources, which leads to the reduction inαCO. The decrease inαCOat high Σis important for accurately assessing molecular gas content and star formation efficiency in the centers of galaxies, which bridge “Milky Way–like” to “starburst-like” conversion factors.

     
    more » « less
  5. Abstract

    We present a spectroscopic analysis of Eridanus IV (Eri IV) and Centaurus I (Cen I), two ultrafaint dwarf galaxies of the Milky Way. Using IMACS/Magellan spectroscopy, we identify 28 member stars of Eri IV and 34 member stars of Cen I. For Eri IV, we measure a systemic velocity ofvsys=31.51.2+1.3kms1, and velocity dispersionσv=6.10.9+1.2kms1. Additionally, we measure the metallicities of 16 member stars of Eri IV. We find a metallicity of[Fe/H]=2.870.07+0.08, and resolve a dispersion ofσ[Fe/H]=0.20 ± 0.09. The mean metallicity is marginally lower than all other known ultrafaint dwarf galaxies, making it one of the most metal-poor galaxies discovered thus far. Eri IV also has a somewhat unusual right-skewed metallicity distribution. For Cen I, we find a velocityvsys= 44.9 ± 0.8 km s−1, and velocity dispersionσv=4.20.5+0.6kms1. We measure the metallicities of 27 member stars of Cen I, and find a mean metallicity [Fe/H] = −2.57 ± 0.08, and metallicity dispersionσ[Fe/H]=0.380.05+0.07. We calculate the systemic proper motion, orbit, and the astrophysical J-factor for each system, the latter of which indicates that Eri IV is a good target for indirect dark matter detection. We also find no strong evidence for tidal stripping of Cen I or Eri IV. Overall, our measurements confirm that Eri IV and Cen I are dark-matter-dominated galaxies with properties largely consistent with other known ultrafaint dwarf galaxies. The low metallicity, right-skewed metallicity distribution, and high J-factor make Eri IV an especially interesting candidate for further follow-up.

     
    more » « less