skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Mott‐Limited Thermopower of Pascal Electron Liquid Phases at the LaAlO3/SrTiO3 Interface
The thermoelectric properties of quasi‐1D electron waveguides at the LaAlO3/SrTiO3interface at millikelvin temperatures are investigated. A highly enhanced and oscillating thermopower is found for these electron waveguides, with values exceeding 100 μV K−1at 0.1 K in the electron‐depletion regime. The Mott relation, which governs the band‐term thermopower of noninteracting electrons, agrees well with the experimental findings in and around regimes where strongly attractive electron–electron interactions lead to a previously reported Pascal series of conductance explained by bound states of electrons. These results pave the way for quantized thermal transport studies of emergent electron liquid phases in which transport is governed by quasiparticles with charges that are integer multiples or fractions of an electron.  more » « less
Award ID(s):
2225888
PAR ID:
10477124
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Physica Status Solidi b
Date Published:
Journal Name:
physica status solidi (b)
Volume:
260
Issue:
6
ISSN:
0370-1972
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Excitons are spin integer particles that are predicted to condense into a coherent quantum state at sufficiently low temperature. Here by using photocurrent imaging we report experimental evidence of formation and efficient transport of non-equilibrium excitons in Bi2-xSbxSe3nanoribbons. The photocurrent distributions are independent of electric field, indicating that photoexcited electrons and holes form excitons. Remarkably, these excitons can transport over hundreds of micrometers along the topological insulator (TI) nanoribbons before recombination at up to 40 K. The macroscopic transport distance, combined with short carrier lifetime obtained from transient photocurrent measurements, indicates an exciton diffusion coefficient at least 36 m2 s−1, which corresponds to a mobility of 6 × 104 m2 V−1 s−1at 7 K and is four order of magnitude higher than the value reported for free carriers in TIs. The observation of highly dissipationless exciton transport implies the formation of superfluid-like exciton condensate at the surface of TIs. 
    more » « less
  2. The interplay between magnetism and quantum effects has motivated several thermoelectric studies on iron‐telluride yet with little insight on the anomalous features in transport properties near magnetostructural transition temperature (≈70 K). A detailed investigation is carried out on Fe1.1Te by characterizing magnetic, heat capacity, galvanomagnetic, and thermoelectric transport properties to understand the electronic, magnetic, and structural origin of those anomalies. The magnetic susceptibility indicates a bicollinear stripe and short‐range ordering in the antiferromagnetic and paramagnetic domains, respectively. Hall conductivity and transverse magnetoresistance reveal a multicarrier transport impacted by spin fluctuations and magnons. Contributions from phonon‐drag and magnon‐drag are evaluated to understand the origin of the broad peak in antiferromagnetic thermopower. The peak at ≈50 K and the insignificant entropy contribution from the magnonic heat capacity support the phonon‐drag as the origin. The field‐dependent enhancement of thermal conductivity must be associated with field‐dependent spin‐phonon coupling modification. The field‐induced thermopower reduction can be attributed to the suppression of magnons or paramagnons, as evidenced by the magnetic susceptibility data. Above 70 K, the thermal conductivity drops sharply due to the structural change modifying phonon modes. Understanding these properties originated from the spin, and quantum effects are instrumental for designing high‐performance spin‐driven thermoelectrics. 
    more » « less
  3. A new record‐high room‐temperature electron Hall mobility (μRT = 194 cm2 V−1 s−1atn ≈ 8 × 1015 cm−3) for β‐Ga2O3is demonstrated in the unintentionally doped thin film grown on (010) semi‐insulating substrate via metal‐organic chemical vapor deposition (MOCVD). A peak electron mobility of ≈9500 cm2 V−1 s−1is achieved at 45 K. Further investigation on the transport properties indicates the existence of sheet charges near the epilayer/substrate interface. Si is identified as the primary contributor to the background carrier in both the epilayer and the interface, originating from both surface contamination and growth environment. The pregrowth hydrofluoric acid cleaning of the substrate leads to an obvious decrease in Si impurity both at the interface and in the epilayer. In addition, the effect of the MOCVD growth condition, particularly the chamber pressure, on the Si impurity incorporation is studied. A positive correlation between the background charge concentration and the MOCVD growth pressure is confirmed. It is noteworthy that in a β‐Ga2O3film with very low bulk charge concentration, even a reduced sheet charge density plays an important role in the charge transport properties. 
    more » « less
  4. Abstract Deep penetration of energetic electrons (10s–100s of keV) to lowL‐shells (L < 4), as an important source of inner belt electrons, is commonly observed during geomagnetically active times. However, such deep penetration is not observed as frequently for similar energy protons, for which underlying mechanisms are not fully understood. To study their differential deep penetration, we conducted a statistical analysis using phase space densities (PSDs) ofµ = 10–50 MeV/G,K = 0.14 G1/2Re electrons and protons from multiyear Van Allen Probes observations. The results suggest systematic differences in electron and proton deep penetration: electron PSD enhancements at lowL‐shells occur more frequently, deeply, and faster than protons. Forµ = 10–50 MeV/G electrons, the occurrence rate of deep penetration events (defined as daily‐averaged PSD enhanced by at least a factor of 2 within a day atL < 4) is ∼2–3 events/month. For protons, only ∼1 event/month was observed forµ = 10 MeV/G, and much fewer events were identified forµ > 20 MeV/G. Leveraging dual‐Probe configurations, fast electron deep penetrations atL < 4 are revealed: ∼70% of electron deep penetration events occurred within ∼9 hr; ∼8%–13% occurred even within 3 hr, with lower‐µelectrons penetrating faster than higher‐µelectrons. These results suggest nondiffusive radial transport as the main mechanism of electron deep penetrations. In comparison, proton deep penetration happens at a slower pace. Statistics also show that the electron PSD radial gradient is much steeper than protons prior to deep penetration events, which can be responsible for these differential behaviors of electron and proton deep penetrations. 
    more » « less
  5. Abstract Iron rhodium (FeRh) undergoes a first‐order anti‐ferromagnetic to ferromagnetic phase transition above its Curie temperature. By measuring the anomalous Nernst effect (ANE) in (110)‐oriented FeRh films on Al2O3substrates, the ANE thermopower over a temperature range of 100–350 K is observed, with similar magnetic transport behaviors observed for in‐plane magnetization (IM) and out‐of‐plane magnetization (PM) configurations. The temperature‐dependent magnetization–magnetic field strength (M–H) curves revealed that the ANE voltage is proportional to the magnetization of the material, but additional features magnetic textures not shown in the M‐H curves remained intractable. In particular, a sign reversal occurred for the ANE thermopower signal near zero field in the mixed‐magnetic‐phase films at low temperatures, which is attributed to the diamagnetic properties of the Al2O3substrate. Finite element method simulations associated with the Heisenberg spin model and Landau–Lifshitz–Gilbert equation strongly supported the abnormal heat transport behavior from the Al2O3substrate during the experimentally observed magnetic phase transition for the IM and PM configurations. The results demonstrate that FeRh films on an Al2O3substrate exhibit unusual behavior compared to other ferromagnetic materials, indicating their potential for use in novel applications associated with practical spintronics device design, neuromorphic computing, and magnetic memory. 
    more » « less