skip to main content


Title: Myrmecophagy in lizards: evolutionary and ecological implications
Abstract

Myrmecophagy is one of the most common dietary specializations among vertebrates. Ants are an important food resource for many lizard species. Here, we use a large dataset on ant consumption by lizards (345 species, 33 families) to explore evolutionary and ecological correlates of myrmecophagy across the evolutionary history of lizards. Based on literature and previous empirical work, we develop and test the following hypotheses about myrmecophagy: (i) it does not occur randomly across Squamata; it is correlated with (ii) foraging mode, (iii) habitat, (iv) body size, (v) aridity, and/or (vi) species range size. We found that ant ingestion is not distributed randomly in the phylogeny, with higher ingestion concentrated in some Iguania. Myrmecophagy also evolved in Lacertoidea and it is a derived trait with relatively recent origin. Foraging mode, habitat, body size, and aridity do not influence ant ingestion. Species with smaller range sizes show high variability in ant ingestion, whereas lizards with larger ranges tend to eat a lower proportion of ants. This result confirms the general ecological pattern that specialization is more common in narrowly distributed species. We suggest that future studies should also explore dietary specialization more broadly and provide a better taxonomic resolution of ant species in the diet of lizards.

 
more » « less
NSF-PAR ID:
10477354
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Zoological Journal of the Linnean Society
ISSN:
0024-4082
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Deciphering the mechanisms that underpin dietary specialization and niche partitioning is crucial to understanding the maintenance of biodiversity. New world army ants live in species‐rich assemblages throughout the Neotropics and are voracious predators of other arthropods. They are therefore an important and potentially informative group for addressing how diverse predator assemblages partition available prey resources.

    New World army ants are largely specialist predators of other ants, with each species specializing on different ant genera. However, the mechanisms of prey choice are unknown. In this study, we addressed whether the army antEciton hamatum:(a) can detect potential prey odours, (b) can distinguish between odours of prey and non‐prey and (c) can differentiate between different types of odours associated with its prey.

    Using field experiments, we tested the response of army ants to the following four odour treatments: alarm odours, dead ants, live ants and nest material. Each treatment had a unique combination of odour sources and included some movement in two of the treatments (alarm and live ants). Odour treatments were tested for both prey and non‐prey ants. These data were used to determine the degree to whichE. hamatumare using specific prey stimuli to detect potential prey and direct their foraging.

    Army ants responded strongly to odours derived from prey ants, which triggered both increased localized recruitment and slowed advancement of the raid as they targeted the odour source. Odours from non‐prey ants were largely ignored. Additionally, the army ants had the strongest response to the nest material of their preferred prey, with progressively weaker responses across the live ant, dead ant and alarm odours treatments respectively.

    This study reveals that the detection of prey odours, and especially the most persistent odours related to the prey's nest, provides a mechanism for dietary specialization in army ants. If ubiquitous across the Neotropical army ants, then this olfaction‐based ecological specialization may facilitate patterns of resource partitioning and coexistence in these diverse predator communities.

     
    more » « less
  2. Ant–plant interactions are diverse and abundant and include classic models in the study of mutualism and other biotic interactions. By estimating a time-scaled phylogeny of more than 1,700 ant species and a time-scaled phylogeny of more than 10,000 plant genera, we infer when and how interactions between ants and plants evolved and assess their macroevolutionary consequences. We estimate that ant–plant interactions originated in the Mesozoic, when predatory, ground-inhabiting ants first began foraging arboreally. This served as an evolutionary precursor to the use of plant-derived food sources, a dietary transition that likely preceded the evolution of extrafloral nectaries and elaiosomes. Transitions to a strict, plant-derived diet occurred in the Cenozoic, and optimal models of shifts between strict predation and herbivory include omnivory as an intermediate step. Arboreal nesting largely evolved from arboreally foraging lineages relying on a partially or entirely plant-based diet, and was initiated in the Mesozoic, preceding the evolution of domatia. Previous work has suggested enhanced diversification in plants with specialized ant-associated traits, but it appears that for ants, living and feeding on plants does not affect ant diversification. Together, the evidence suggests that ants and plants increasingly relied on one another and incrementally evolved more intricate associations with different macroevolutionary consequences as angiosperms increased their ecological dominance.

     
    more » « less
  3. Abstract Aim

    Given their high environmental variation over relatively short distances, mountains represent ideal systems for evaluating potential factors shaping diversity gradients. Despite a long‐standing interest in ecological gradients, ant diversity patterns and their related mechanisms occurring on mountains are still not well understood. Here, we (i) describe species diversity patterns (α and β) of leaf‐litter ants along the eastern slope of Cofre de Perote in Veracruz, Mexico; and (ii) evaluate climatic and spatial factors in determining these patterns.

    Location

    Veracruz, Mexico.

    Taxon

    Leaf‐litter ants.

    Methods

    We sampled 320 m2of leaf litter spread across eight equally spaced sites from sea level to 3500 m of elevation. We used regression models to predict α‐diversity patterns with climatic (temperature and precipitation) and spatial (geometric constraints) variables. We also assessed, through multiple regression based on distance matrices (MRM), the relative importance of habitat filtering and dispersal limitations for shaping total dissimilarity (βsor), turnover (βsim) and nestedness (βnes).

    Results

    A hump‐shaped pattern was observed in the α‐diversity. This pattern is best explained by the temperature gradient. β‐diversity showed a nonlinear pattern along the elevational gradient with total dissimilarity and turnover components better explained by habitat filtering (i.e. temperature distances). Turnover had higher contribution to total dissimilarity rather than the nestedness component.

    Main conclusions

    The significance effect of temperature on both α‐ and β‐diversity patterns reinforces its widespread importance in shaping litter ant diversity patterns across elevational gradients. The hump‐shaped pattern in species richness is probably the result of harsh abiotic conditions at the base and the top of the mountain combined with biotic attrition in lowland sites. The niche specialization of ant species in their optimal thermal zones may explain total dissimilarity and ant species replacement along the studied gradient. Taken all together, these results suggest a high relevance of temperature‐driven mechanisms in the origin and maintenance of the biodiversity of such insects and probably another ectothermic taxa.

     
    more » « less
  4. null (Ed.)
    Synopsis Arboreal ants must navigate variably sized and inclined linear structures across a range of substrate roughness when foraging tens of meters above the ground. To achieve this, arboreal ants use specialized adhesive pads and claws to maintain effective attachment to canopy substrates. Here, we explored the effect of substrate structure, including small and large-scale substrate roughness, substrate diameter, and substrate orientation (inclination), on adhesion and running speed of workers of one common, intermediately-sized, arboreal ant species. Normal (orthogonal) and shear (parallel) adhesive performance varied on sandpaper and natural leaf substrates, particularly at small size scales, but running speed on these substrates remained relatively constant. Running speed also varied minimally when running up and down inclined substrates, except when the substrate was positioned completely vertical. On vertical surfaces, ants ran significantly faster down than up. Ant running speed was slower on relatively narrow substrates. The results of this study show that variation in the physical properties of tree surfaces differentially affects arboreal ant adhesive and locomotor performance. Specifically, locomotor performance was much more robust to surface roughness than was adhesive performance. The results provide a basis for understanding how performance correlates of functional morphology contribute to determining local ant distributions and foraging decisions in the tropical rainforest canopy. 
    more » « less
  5. Abstract

    Understanding the processes driving formation and maintenance of latitudinal clines has become increasingly important in light of accelerating global change. Many studies have focused on the role of abiotic factors, especially temperature, in generating clines, but biotic factors, including the introduction of non‐native species, may also drive clinal variation. We assessed the impact of invasion by predatory fire ants on latitudinal clines in multiple fitness‐relevant traits—morphology, physiological stress responsiveness, and antipredator behavior—in a native fence lizard. In areas invaded by fire ants, a latitudinal cline in morphology is opposite both the cline found in museum specimens from historical populations across the species’ full latitudinal range and that found in current populations uninvaded by fire ants. Similarly, clines in stress‐relevant hormone response to a stressor and in antipredator behavior differ significantly between the portions of the fence lizard range invaded and uninvaded by fire ants. Changes in these traits within fire ant‐invaded areas are adaptive and together support increased and more effective antipredator behavior that allows escape from attacks by this invasive predator. However, these changes may mismatch lizards to the environments under which they historically evolved. This research shows that novel biotic pressures can alter latitudinal clines in multiple traits within a single species on ecological timescales. As global change intensifies, a greater understanding of novel abiotic and biotic pressures and how affected organisms adapt to them across space and time will be central to predicting and managing our changing environment.

     
    more » « less