Allometric scaling describes the relationship of trait size to body size within and among taxa. The slope of the population‐level regression of trait size against body size (
Species living in distinct habitats often experience unique ecological selective pressures, which can drive phenotypic divergence. However, how ecophenotypic patterns are affected by allometric trends and trait integration levels is less well understood. Here we evaluate the role of allometry in shaping body size and body form diversity in Pristurus geckos utilizing differing habitats. We found that patterns of allometry and integration in body form were distinct in species with different habitat preferences, with ground-dwelling Pristurus displaying the most divergent allometric trend and high levels of integration. There was also strong concordance between intraspecific allometry across individuals and evolutionary allometry among species, revealing that differences in body form among individuals were predictive of evolutionary changes across the phylogeny at macroevolutionary scales. This suggested that phenotypic evolution occurred along allometric lines of least resistance, with allometric trajectories imposing a strong influence on the magnitude and direction of size and shape changes across the phylogeny. When viewed in phylomorphospace, the largest rock-dwelling species were most similar to the smallest ground-dwelling species, and vice versa. Thus, in Pristurus, phenotypic evolution along the differing habitat-based allometric trajectories resulted in similar body forms at differing body sizes in distinct ecological habitats.
more » « less- Award ID(s):
- 2140720
- PAR ID:
- 10477424
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Evolution
- Volume:
- 77
- Issue:
- 12
- ISSN:
- 0014-3820
- Format(s):
- Medium: X Size: p. 2547-2560
- Size(s):
- p. 2547-2560
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract i.e . static allometry) is typically invariant among closely related populations and species. Such invariance is commonly interpreted to reflect a combination of developmental and selective constraints that delimit a phenotypic space into which evolution could proceed most easily. Thus, understanding how allometric relationships do eventually evolve is important to understanding phenotypic diversification. In a lineage of fossil Threespine Stickleback (Gasterosteus doryssus ), we investigated the evolvability of static allometric slopes for nine traits (five armour and four non‐armour) that evolved significant trait differences across 10 samples over 8500 years. The armour traits showed weak static allometric relationships and a mismatch between those slopes and observed evolution. This suggests that observed evolution in these traits was not constrained by relationships with body size, perhaps because prior, repeated adaptation to freshwater habitats by Threespine Stickleback had generated strong selection to break constraint. In contrast, for non‐armour traits, we found stronger allometric relationships. Those allometric slopes did evolve on short time scales. However, those changes were small and fluctuating and the slopes remained strong predictors of the evolutionary trajectory of trait means over time (i.e . evolutionary allometry), supporting the hypothesis of allometry as constraint. -
Abstract Sexual dimorphism describes phenotypic differences between the sexes; the most prominent of which is sexual size dimorphism (SSD). Rensch’s rule (RR) is an allometric trend in which SSD increases in male-larger taxa and decreases in female-larger ones. Covariation between a trait and overall size within and across species can both be affected by sexual and natural selection. Thus, intraspecific allometric variation could influence the expression of RR. Here we used computer simulations to dissect how RR emerges under specific allometric patterns of intraspecific sexual differentiation in a trait. We found that sexual differentiation in static allometric slopes is the main determinant of RR. Based on our findings, RR and its converse can manifest in both body size and other traits. As a realistic showcase, we also examined RR and static allometry of different body parts in Mediterranean green lizards to establish whether intraspecific and evolutionary allometry are linked. Here, we identified RR and its converse for different traits, where the amount of sexual differentiation in static allometric slopes within species had a significant contribution to RR. Integrating the simulations and the empirical case we corroborate that sexual differentiation in static allometric slopes is a major parameter affecting evolutionary allometry.
-
Abstract Developmental and evolutionary processes underlying phenotypic variation frequently target several traits simultaneously, thereby causing covariation, or integration, among phenotypes. While phenotypic integration can be neutral, correlational selection can drive adaptive covariation. Especially, the evolution and development of exaggerated secondary sexual traits may require the adjustment of other traits that support, compensate for, or otherwise function in a concerted manner. Although phenotypic integration is ubiquitous, the interplay between genetic, developmental, and ecological conditions in shaping integration and its evolution remains poorly understood. Here, we study the evolution and plasticity of trait integration in the bull‐headed dung beetle
Onthophagus taurus which is characterized by the polyphenic expression of horned (‘major’) and hornless (‘minor’) male morphs. By comparing populations subject to divergent intensities of mate competition, we tested whether mating system shifts affect integration of traits predicted to function in a morph‐specific manner. We focussed on fore and hind tibia morphology as these appendages are used to stabilize major males during fights, and on wings, as they are thought to contribute to morph‐based differences in dispersal behavior. We found phenotypic integration between fore and hind tibia length and horn length that was stronger in major males, suggesting phenotypic plasticity in integration and potentially secondary sexual trait compensation. Similarly, we observed that fore tibiashape was also integrated with relative horn length. However, although we found population differentiation in wing and tibia shape and allometry, populations did not differ in integration. Lastly, we detected little evidence for morph differences in integration in either tibia or wing shape, although wing allometries differed between morphs. This contrasts with previous studies documenting intraspecific differentiation in morphology, behavior, and allometry as a response to varying levels of mate competition acrossO. taurus populations. We discuss how sexual selection may shape morph‐specific integration, compensation, and allometry across populations. -
Abstract Animals that are successful in urban habitats often have reduced antipredator responses toward people (sometimes called “fear” responses). However, few studies test whether sympatric species differ in their responses to humans, which may explain differing sensitivities to urbanization. Here, we quantified the behavioral and physiological responses to humans in two lizard species, side-blotched lizards (Uta stansburiana) and western fence lizards (Sceloporus occidentalis), across three different habitat types that vary in human impact: natural habitats with low levels of human activity, natural habitats with high levels of human activity, and urban habitats. We found that side-blotched lizards had longer flight initiation distances, were found closer to a refuge, and were more likely to hide than fence lizards, behaviors that could indicate greater fearfulness. Both lizard species were found closer to a refuge and were also more likely to hide in the urban habitat than in the natural habitat with low human impact, which could represent adaptive behaviors for increased risks in urban areas (e.g. cats). Western fence lizards exhibited lower body sizes and conditions in the habitats with moderate and high levels of human activity, whereas these traits did not differ among habitats in side-blotched lizards. Baseline and stress-induced corticosterone concentrations did not differ across habitats for both species, suggesting that human-impacted habitats were not stressful or that lizards had undergone habituation-like processes in these habitats. Taken together, our results highlight the importance of standardized measurements across multiple species in the same habitats to understand differential responses to human-induced environmental change.
-
ABSTRACT Orbit orientation in primates has been linked to adaptive factors related to activity pattern and size‐related variation in structural influences on orbit position. Although differences in circumorbital form between anthropoids and strepsirrhines appear to be related to interspecific disparities in levels of orbital convergence and orbital frontation, there is considerable overlap in convergence between suborders. Unfortunately, putative links between convergence and frontation across primates, and consequent arguments about primate and anthropoid origins, are likely to be influenced by allometry, the size range of a respective sample, and adaptive influences on encephalization and activity patterns. Such a multifarious system is less amenable to interspecific treatment across higher‐level clades. An ontogenetic perspective is one way to evaluate transformations from one character state to another, especially as they pertain to allometric effects on phenotypic variation. We characterized the ontogeny of orbital convergence and frontation in 13 anthropoid and strepsirrhine species. In each suborder, correlation and regression analyses were used to test hypotheses regarding the allometric bases of variation in orbital orientation. Growth trajectories were analyzed intra‐ and inter‐specifically. Frontation decreased postnatally in all taxa due to the negative scaling of brain vs. skull size. Further, interspecific variation in relative levels of frontation was linked to corresponding ontogenetic transpositions in encephalization that differed within both suborders. In strepsirrhines, postnatal increases in convergence were largely due to the negative allometry of orbit vs. skull size. In contrast, convergence in anthropoids varied little during growth, being unrelated to ontogenetic variation in either relative orbit or interorbit size. Anat Rec, 302:2093–2104, 2019. © 2019 American Association for Anatomy