skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Phylogenomics reveals the deep ocean as an accelerator for evolutionary diversification in anglerfishes
ABSTRACT Colonization of a novel habitat is often followed by radiation in the wake of ecological opportunity. Alternatively, some habitats should be inherently more constraining than others if the challenges of that environment have few evolutionary solutions. We examined the push-and-pull of these factors on evolution following habitat transitions, using anglerfishes (Lophiiformes) as a model. Deep-sea fishes are notoriously difficult to study, and poor sampling has limited progress thus far. Here we present a new phylogeny of anglerfishes with unprecedented taxonomic sampling (1,092 loci and 40% of species), combined with three-dimensional phenotypic data from museum specimens obtained with micro-CT scanning. We use these datasets to examine the tempo and mode of phenotypic and lineage diversification using phylogenetic comparative methods, comparing lineages in shallow and deep benthic versus bathypelagic habitats. Our results show that anglerfishes represent a surprising case where the bathypelagic lineage has greater taxonomic and phenotypic diversity than coastal benthic relatives. This defies expectations based on ecological principles since the bathypelagic zone is the most homogeneous habitat on Earth. Deep-sea anglerfishes experienced rapid lineage diversification concomitant with colonization of the bathypelagic zone from a continental slope ancestor. They display the highest body, skull and jaw shape disparity across lophiiforms. In contrast, reef-associated taxa show strong constraints on shape and low evolutionary rates, contradicting patterns suggested by other shallow marine fishes. We found that Lophiiformes as a whole evolved under an early burst model with subclades occupying distinct body shapes. We further discuss to what extent the bathypelagic clade is a secondary adaptive radiation, or if its diversity can be explained by non-adaptive processes.  more » « less
Award ID(s):
2225130
PAR ID:
10583072
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
bioRxiv
Date Published:
Format(s):
Medium: X
Institution:
bioRxiv
Sponsoring Org:
National Science Foundation
More Like this
  1. Almost nothing is known about the diets of bathypelagic fishes, but functional morphology can provide useful tools to infer ecology. Here we quantify variation in jaw and tooth morphologies across anglerfishes (Lophiiformes), a clade spanning shallow and deep-sea habitats. Deep-sea ceratioid anglerfishes are considered dietary generalists due to the necessity of opportunistic feeding in the food-limited bathypelagic zone. We found unexpected diversity in the trophic morphologies of ceratioid anglerfishes. Ceratioid jaws span a functional continuum ranging from species with numerous stout teeth, a relatively slow but forceful bite, and high jaw protrusibility at one end (characteristics shared with benthic anglerfishes) to species with long fang-like teeth, a fast but weak bite and low jaw protrusibility at the other end (including a unique ‘wolftrap’ phenotype). Our finding of high morphological diversity seems to be at odds with ecological generality, reminiscent of Liem's paradox (morphological specialization allowing organisms to have broader niches). Another possible explanation is that diverse ceratioid functional morphologies may yield similar trophic success (many-to-one mapping of morphology to diet), allowing diversity to arise through neutral evolutionary processes. Our results highlight that there are many ways to be a successful predator in the deep sea. 
    more » « less
  2. Abstract Evolutionary transitions between marine and freshwater ecosystems have occurred repeatedly throughout the phylogenetic history of fishes. The theory of ecological opportunity predicts that lineages that colonize species-poor regions will have greater potential for phenotypic diversification than lineages invading species-rich regions. Thus, transitions between marine and freshwaters may promote phenotypic diversification in trans-marine/freshwater fish clades. We used phylogenetic comparative methods to analyze body size data in nine major fish clades that have crossed the marine/freshwater boundary. We explored how habitat transitions, ecological opportunity, and community interactions influenced patterns of phenotypic diversity. Our analyses indicated that transitions between marine and freshwater habitats did not drive body size evolution, and there are few differences in body size between marine and freshwater lineages. We found that body size disparity in freshwater lineages is not correlated with the number of independent transitions to freshwaters. We found a positive correlation between body size disparity and overall species richness of a given area, and a negative correlation between body size disparity and diversity of closely related species. Our results indicate that the diversity of incumbent freshwater species does not restrict phenotypic diversification, but the diversity of closely related taxa can limit body size diversification. Ecological opportunity arising from colonization of novel habitats does not seem to have a major effect in the trajectory of body size evolution in trans-marine/freshwater clades. Moreover, competition with closely related taxa in freshwaters has a greater effect than competition with distantly related incumbent species. 
    more » « less
  3. Abstract Divergence in body shape is one of the most widespread and repeated patterns of morphological variation in fishes and is associated with habitat specification and swimming mechanics. Such ecological diversification is the first stage of the explosive adaptive radiation of cichlid fishes in the East African Rift Lakes. We use two hybrid crosses of cichlids (Metriaclimasp.×Aulonocarasp. andLabidochromissp.×Labeotropheussp., >975 animals total) to determine the genetic basis of body shape diversification that is similar to benthic‐pelagic divergence across fishes. Using a series of both linear and geometric shape measurements, we identified 34 quantitative trait loci (QTL) that underlie various aspects of body shape variation. These QTL are spread throughout the genome, each explaining 3.2–8.6% of phenotypic variation, and are largely modular. Further, QTL are distinct both between these two crosses of Lake Malawi cichlids and compared to previously identified QTL for body shape in fishes such as sticklebacks. We find that body shape is controlled by many genes of small effect. In all, we find that convergent body shape phenotypes commonly observed across fish clades are most likely due to distinct genetic and molecular mechanisms. 
    more » « less
  4. The deep sea contains a surprising diversity of life, including iconic fish groups such as anglerfishes and lanternfishes. Still, >65% of marine teleost fish species are restricted to the photic zone <200 m, which comprises less than 10% of the ocean’s total volume. From a macroevolutionary perspective, this paradox may be explained by three hypotheses: 1) shallow water lineages have had more time to diversify than deep-sea lineages, 2) shallow water lineages have faster rates of speciation than deep-sea lineages, or 3) shallow-to-deep sea transition rates limit deep-sea richness. Here we use phylogenetic comparative methods to test among these three non-mutually exclusive hypotheses. While we found support for all hypotheses, the disparity in species richness is better described as the uneven outcome of alternating phases that favored shallow or deep diversification over the past 200 million y. Shallow marine teleosts became incredibly diverse 100 million y ago during a period of warm temperatures and high sea level, suggesting the importance of reefs and epicontinental settings. Conversely, deep-sea colonization and speciation was favored during brief episodes when cooling temperatures increased the efficiency of the ocean’s carbon pump. Finally, time-variable ecological filters limited shallow-to-deep colonization for much of teleost history, which helped maintain higher shallow richness. A pelagic lifestyle and large jaws were associated with early deep-sea colonists, while a demersal lifestyle and a tapered body plan were typical of later colonists. Therefore, we also suggest that some hallmark characteristics of deep-sea fishes evolved prior to colonizing the deep sea. 
    more » « less
  5. Adaptive radiations are characterized by an increase in species and/or phenotypic diversity as organisms fill open ecological niches. Often, the putative adaptive radiation has been studied without explicit comparison to the patterns and rates of evolution of closely related clades, leaving open the question whether notable changes in evolutionary process indeed occurred at the origin of the group. Anolis lizards are an oft-used model for investigating the tempo and mode of adaptive radiations. Most of the prior research on the diversification of Anolis morphology has focused on the post-cranium because of its significance towards subdivision of the arboreal habitat. But the remarkable diversity in head shape in anoles has not been as thoroughly investigated. It remains unknown whether the tempo or mode of head shape diversification changed as anoles diversified. We performed geometric morphometric analysis of skull shape across a sample of 12 Iguanian families (110 species), including anoles. Anolis lizards occupy a unique area and a wider region of morphological space compared to the 11 other families examined. We did not find a difference in the evolutionary rate of head shape diversification between anoles and their relatives. Rather, the extraordinary amount of skull diversity arose through a distinct mode of evolution; anoles moved into novel regions by relatively large morphological transitions across morphological space compared to their relatives. Our results demonstrate that traits not directly tied to the adaptive shift of a lineage into unique ecological spaces may undergo exceptional patterns of change as the clade diversifies. 
    more » « less