skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Chasing Interannual Marine Paleovariability
Abstract Several modes of tropical sea‐surface temperature (SST) variability operate on year‐to‐year (interannual) timescales and profoundly shape seasonal precipitation patterns across adjacent landmasses. Substantial uncertainty remains in addressing how SST variability will become altered under sustained greenhouse warming. Paleoceanographic estimates of changes in variability under past climatic states have emerged as a powerful method to clarify the sensitivity of interannual variability to climate forcing. Several approaches have been developed to investigate interannual SST variability within and beyond the observational period, primarily using marine calcifiers that afford subannual‐resolution sampling plans. Amongst these approaches, geochemical variations in coral skeletons are particularly attractive for their near‐monthly, continuous sampling resolution, and capacity to focus on SST anomalies after removing an annual cycle calculated over many years (represented as geochemical oscillations). Here we briefly review the paleoceanographic pursuit of interannual variability. We additionally highlight recent research documented by Ong et al., (2022,https://doi.org/10.1029/2022PA004483) who demonstrate the utility of Sr/Ca variations in capturing SST variability using a difficult‐to‐sample meandroid coral species,Colpophyllia natans, which is widespread across the Caribbean region and can be used to generate records spanning multiple centuries.  more » « less
Award ID(s):
2103077
PAR ID:
10477445
Author(s) / Creator(s):
;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Paleoceanography and Paleoclimatology
Volume:
38
Issue:
8
ISSN:
2572-4517
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We compared the performance of DREAM3D simulations in reproducing the long‐term radiation belt dynamics observed by Van Allen Probes over the entire year of 2017 with various boundary conditions (BCs) and model inputs. Specifically, we investigated the effects of three different outer boundary conditions, two different low‐energy boundary conditions for seed electrons, four different radial diffusion (RD) coefficients (DLL), four hiss wave models, and two chorus wave models from the literature. Using the outer boundary condition driven by GOES data, our benchmark simulation generally well reproduces the observed radiation belt dynamics insideL* = 6, with a better model performance at lowerμthan higherμ, whereμis the first adiabatic invariant. By varying the boundary conditions and inputs, we find that: (a) The data‐driven outer boundary condition is critical to the model performance, while adding in the data‐driven seed population doesn't further improve the performance. (b) The model shows comparable performance withDLLfrom Brautigam and Albert (2000,https://doi.org/10.1029/1999ja900344), Ozeke et al. (2014,https://doi.org/10.1002/2013ja019204), and Liu et al. (2016,https://doi.org/10.1002/2015gl067398), while withDLLfrom Ali et al. (2016,https://doi.org/10.1002/2016ja023002) the model shows less RD compared to data. (c) The model performance is similar with data‐based hiss models, but the results show faster loss is still needed inside the plasmasphere. (d) The model performs similarly with the two different chorus models, but better capturing the electron enhancement at higherμusing the Wang et al. (2019,https://doi.org/10.1029/2018ja026183) model due to its stronger wave power, since local heating for higher energy electrons is under‐reproduced in the current model. 
    more » « less
  2. Abstract We introduce a new framework called Machine Learning (ML) based Auroral Ionospheric electrodynamics Model (ML‐AIM). ML‐AIM solves a current continuity equation by utilizing the ML model of Field Aligned Currents of Kunduri et al. (2020,https://doi.org/10.1029/2020JA027908), the FAC‐derived auroral conductance model of Robinson et al. (2020,https://doi.org/10.1029/2020JA028008), and the solar irradiance conductance model of Moen and Brekke (1993,https://doi.org/10.1029/92gl02109). The ML‐AIM inputs are 60‐min time histories of solar wind plasma, interplanetary magnetic fields (IMF), and geomagnetic indices, and its outputs are ionospheric electric potential, electric fields, Pedersen/Hall currents, and Joule Heating. We conduct two ML‐AIM simulations for a weak geomagnetic activity interval on 14 May 2013 and a geomagnetic storm on 7–8 September 2017. ML‐AIM produces physically accurate ionospheric potential patterns such as the two‐cell convection pattern and the enhancement of electric potentials during active times. The cross polar cap potentials (ΦPC) from ML‐AIM, the Weimer (2005,https://doi.org/10.1029/2004ja010884) model, and the Super Dual Auroral Radar Network (SuperDARN) data‐assimilated potentials, are compared to the ones from 3204 polar crossings of the Defense Meteorological Satellite Program F17 satellite, showing better performance of ML‐AIM than others. ML‐AIM is unique and innovative because it predicts ionospheric responses to the time‐varying solar wind and geomagnetic conditions, while the other traditional empirical models like Weimer (2005,https://doi.org/10.1029/2004ja010884) designed to provide a quasi‐static ionospheric condition under quasi‐steady solar wind/IMF conditions. Plans are underway to improve ML‐AIM performance by including a fully ML network of models of aurora precipitation and ionospheric conductance, targeting its characterization of geomagnetically active times. 
    more » « less
  3. Abstract We show that atmospheric gravity waves can generate plasma ducts and irregularities in the plasmasphere using the coupled SAMI3/WACCM‐X model. We find the equatorial electron density is irregular as a function of longitude which is consistent with CRRES measurements (Clilverd et al., 2007,https://doi.org/10.1029/2007ja012416). We also find that plasma ducts can be generated forL‐shells in the range 1.5–3.0 with lifetimes of ∼ 0.5 hr; this is in line with observations of ducted VLF wave propagation with lifetimes of 0.5–2.0 hr (Clilverd et al., 2008,https://doi.org/10.1029/2007ja012602; Singh et al., 1998,https://doi.org/10.1016/s1364-6826(98)00001-7). 
    more » « less
  4. Abstract We report on the mountain top observation of three terrestrial gamma‐ray flashes (TGFs) that occurred during the summer storm season of 2021. To our knowledge, these are the first TGFs observed in a mountaintop environment and the first published European TGFs observed from the ground. A gamma‐ray sensitive detector was located at the base of the Säntis Tower in Switzerland and observed three unique TGF events with coincident radio sferic data characteristic of TGFs seen from space. We will show an example of a “slow pulse” radio signature (Cummer et al., 2011,https://doi.org/10.1029/2011GL048099; Lu et al., 2011,https://doi.org/10.1029/2010JA016141; Pu et al., 2019,https://doi.org/10.1029/2019GL082743; Pu et al., 2020,https://doi.org/10.1029/2020GL089427), a −EIP (Lyu et al., 2016,https://doi.org/10.1002/2016GL070154; Lyu et al., 2021,https://doi.org/10.1029/2021GL093627; Wada et al., 2020,https://doi.org/10.1029/2019JD031730), and a double peak TGF associated with an extraordinarily powerful and complicated positive‐polarity sferic, where each TGF peak is possibly preceded by a short burst of stepped leader emission. 
    more » « less
  5. Abstract In 2020, Arizonans approved Proposition 207, the Smart and Safe Arizona Act, which legalized recreational marijuana sales. Previous research has typically used non‐spatial survey data to understand marijuana legalization voting patterns. However, voting behavior can, in part, be shaped by geographic context, or place, which is unaccounted for in aspatial survey data. We use multiscale geographically weighted regression to analyze how place shaped Proposition 207 voting behavior, independently of demographic variations across space. We find significant spatial variability in the sensitivity of voting for Proposition 207 to changes in several of the predictor variables of opposition and support for recreational marijuana legalization. We argue that local statistical modeling approaches provide a more in‐depth understanding of ballot measure voting behavior than the current use of global models. Related ArticlesBranton, Regina, and Ronald J. McGauvran. 2018. “Mary Jane Rocks the Vote: The Impact of Climate Context on Support for Cannabis Initiatives.”Politics & Policy46(2): 209–32.https://doi.org/10.1111/polp.12248.Brekken, Katheryn C., and Vanessa M. Fenley. 2020. “Part of the Narrative: Generic News Frames in the U.S. Recreational Marijuana Policy Subsystem.”Politics & Policy49(1): 6–32.https://doi.org/10.1111/polp.12388.Fisk, Jonathan M., Joseph A. Vonasek, and Elvis Davis. 2018. “‘Pot'reneurial Politics: The Budgetary Highs and Lows of Recreational Marijuana Policy Innovation.”Politics & Policy46(2): 189–208.https://doi.org/10.1111/polp.12246. 
    more » « less