skip to main content


Title: Sediment Compaction in Experimental Deltas: Toward a Meso‐Scale Understanding of Coastal Subsidence Patterns
Abstract

We present the first investigation of subsidence due to sediment compaction and consolidation in two laboratory‐scale river delta experiments. Spatial and temporal trends in subsidence rates in the experimental setting may elucidate behavior which cannot be directly observed at sufficiently long timescales, except for in reduced scale models such as the ones studied. We compare subsidence between a control experiment using steady boundary conditions, and an otherwise identical experiment which has been treated with a proxy for highly compressible marsh deposits. Both experiments have non‐negligible compactional subsidence rates across the delta‐top, comparable in magnitude to our boundary condition relative sea level rise rate of 250 μm/hr. Subsidence in the control experiment (on average 54 μm/hr) is concentrated in the lowest elevation (<10 mm above sea level) areas near the coast and is likely related to creep induced by a rising water table near the shoreface. The treatment experiment exhibits larger (on average 126 μm/hr) and more spatially variable subsidence rates controlled mostly by compaction of recent marsh deposits within one channel depth (∼10 mm) of the sediment surface. These rates compare favorably with field and modeling based subsidence measurements both in relative magnitude and location. We find that subsidence “hot spots” may be relatively ephemeral on longer timescales, but average subsidence across the entire delta can be variable even at our shortest measurement window. This suggests that subsidence rates over a short time frame may exceed thresholds for marsh platform drowning, even if the long term trend does not.

 
more » « less
Award ID(s):
1848993 1848994
PAR ID:
10477500
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Earth Surface
Volume:
128
Issue:
11
ISSN:
2169-9003
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Rising sea levels, subsidence, and decreased fluvial sediment load threaten river deltas and their wetlands. However, the feedbacks between fluvial and non‐fluvial (marsh) deposition remain weakly constrained. We investigate how non‐riverine, elevation‐controlled deposition typified by marshes impacts sediment partitioning between a delta's topset, coastal zone, and foreset by comparing a delta experiment with proxy marsh accumulation to a control. Marsh accumulation alters fluvial sediment distribution by decreasing the slope in the marsh window by ∼50%, creating a 78% larger marsh zone. Fluvial incursions into the marsh window trap 1.3 times more clastic volume. The volume exported to deep water remains unchanged. Marsh deposition shifts elevation distributions toward sea level, which produces a hypsometry akin to field‐scale deltas. The elevation‐lowering effect of marshes on an equilibrium delta shown here constitutes an unexplored feedback and an important aspect of coastal sustainability.

     
    more » « less
  2. Quantitative, broadly applicable metrics of resilience are needed to effectively manage tidal marshes into the future. Here we quantified three metrics of temporal marsh resilience: time to marsh drowning, time to marsh tipping point, and the probability of a regime shift, defined as the conditional probability of a transition to an alternative super-optimal, suboptimal, or drowned state. We used organic matter content (loss on ignition, LOI) and peat age combined with the Coastal Wetland Equilibrium Model (CWEM) to track wetland development and resilience under different sea-level rise scenarios in the Sacramento-San Joaquin Delta (Delta) of California. A 100-year hindcast of the model showed excellent agreement ( R 2 = 0.96) between observed (2.86 mm/year) and predicted vertical accretion rates (2.98 mm/year) and correctly predicted a recovery in LOI ( R 2 = 0.76) after the California Gold Rush. Vertical accretion in the tidal freshwater marshes of the Delta is dominated by organic production. The large elevation range of the vegetation combined with high relative marsh elevation provides Delta marshes with resilience and elevation capital sufficiently great to tolerate centenary sea-level rise (CLSR) as high as 200 cm. The initial relative elevation of a marsh was a strong determinant of marsh survival time and tipping point. For a Delta marsh of average elevation, the tipping point at which vertical accretion no longer keeps up with the rate of sea-level rise is 50 years or more. Simulated, triennial additions of 6 mm of sediment via episodic atmospheric rivers increased the proportion of marshes surviving from 51% to 72% and decreased the proportion drowning from 49% to 28%. Our temporal metrics provide critical time frames for adaptively managing marshes, restoring marshes with the best chance of survival, and seizing opportunities for establishing migration corridors, which are all essential for safeguarding future habitats for sensitive species. 
    more » « less
  3. Salt marshes are vulnerable to sea-level rise, sediment deficits, and storm impacts. To remain vertically resilient, salt marshes must accrete sediment at rates greater or equal to sea-level rise. Ice-rafted debris (IRD), sediment that has been moved and deposited from ice sheets, is one of many processes that contribute to salt marsh sediment accretion in northern latitudes. On 4 January 2018, a winter storm caused major ice mobilization in the Plum Island Estuary (PIE), Massachusetts, USA, which led to large deposits of ice-rafted sediment. We aimed to quantify the volume and mass of deposited sediment, and evaluate the significance of IRD to sediment supply in Plum Island using pixel-based land-cover classification of aerial imagery collected by an Unmanned Aircraft System (UAS) and a Digital Elevation Model. Field measurements of patch thickness, and the area of IRD determined from the classification were used to estimate annual sediment accretion from IRD. Results show that IRD deposits are localized in three areas, and estimates show that IRD contributes an annual sediment accretion rate of 0.57 ± 0.14 mm/y to the study site. New England salt marsh accretion rates typically vary between 2–10 mm/y, and the average PIE sediment accretion rate is 2.5–2.7 mm/y. Therefore, this event contributed on average 20% of the annual volume of material accreted by salt marshes, although locally the deposit thickness was 8–14 times the annual accretion rate. We show that pixel-based classification can be a useful tool for identifying sediment deposits from remote sensing. Additionally, we suggest that IRD has the potential to bring a significant supply of sediment to salt marshes in northern latitudes and contribute to sediment accretion. As remotely sensed aerial imagery from UASs becomes more readily available, this method can be used to efficiently identify and quantify deposited sediment. 
    more » « less
  4. Abstract

    Relative sea level rise at tide gauge Galveston Pier 21, Texas, is the combination of absolute sea level rise and land subsidence. We estimate subsidence rates of 3.53 mm/a during 1909–1937, 6.08 mm/a during 1937–1983, and 3.51 mm/a since 1983. Subsidence attributed to aquifer-system compaction accompanying groundwater extraction contributed as much as 85% of the 0.7 m relative sea level rise since 1909, and an additional 1.9 m is projected by 2100, with contributions from land subsidence declining from 30 to 10% over the projection interval. We estimate a uniform absolute sea level rise rate of 1.10 mm ± 0.19/a in the Gulf of Mexico during 1909–1992 and its acceleration of 0.270 mm/a2at Galveston Pier 21 since 1992. This acceleration is 87% of the value for the highest scenario of global mean sea level rise. Results indicate that evaluating this extreme scenario would be valid for resource-management and flood-hazard-mitigation strategies for coastal communities in the Gulf of Mexico, especially those affected by subsidence.

     
    more » « less
  5. Sea-level rise, subsidence, and reduced fluvial sediment supply are causing river deltas to drown worldwide, affecting ecosystems and billions of people. Abrupt changes in river course, called avulsions, naturally nourish sinking land with sediment; however, they also create catastrophic flood hazards. Existing observations and models conflict on whether the occurrence of avulsions will change due to relative sea-level rise, hampering the ability to forecast delta response to global climate change. Here, we combined theory, numerical modeling, and field observations to develop a mechanistic framework to predict avulsion frequency on deltas with multiple self-formed lobes that scale with backwater hydrodynamics. Results show that avulsion frequency is controlled by the competition between relative sea-level rise and sediment supply that drives lobe progradation. We find that most large deltas are experiencing sufficiently low progradation rates such that relative sea-level rise enhances aggradation rates—accelerating avulsion frequency and associated hazards compared to preindustrial conditions. Some deltas may face even greater risk; if relative sea-level rise significantly outpaces sediment supply, then avulsion frequency is maximized, delta plains drown, and avulsion locations shift inland, posing new hazards to upstream communities. Results indicate that managed deltas can support more frequent engineered avulsions to recover sinking land; however, there is a threshold beyond which coastal land will be lost, and mitigation efforts should shift upstream.

     
    more » « less