A<sc>bstract</sc> We propose a new model of low dimensional de Sitter holography in the form of a pair of double-scaled SYK models at infinite temperature coupled via an equal energy constraintHL=HR. As a test of the duality, we compute the two-point function between two dressed SYK operators$$ {\mathcal{O}}_{\Delta } $$ that preserve the constraint. We find that in the largeNlimit, the two-point function precisely matches with the Green’s function of a massive scalar field of mass squaredm2= 4∆(1 – ∆) in a 3D de Sitter space-time with radiusRdS/GN= 4πN/p2. In this correspondence, the SYK time is identified with the proper time difference between the two operators. We introduce a candidate gravity dual of the doubled SYK model given by a JT/de Sitter gravity model obtained via a circle reduction from 3D Einstein-de Sitter gravity. We comment on the physical meaning of the finite de Sitter temperature and entropy.
more »
« less
An integrable road to a perturbative plateau
A<sc>bstract</sc> As has been known since the 90s, there is an integrable structure underlying two-dimensional gravity theories. Recently, two-dimensional gravity theories have regained an enormous amount of attention, but now in relation with quantum chaos — superficially nothing like integrability. In this paper, we return to the roots and exploit the integrable structure underlying dilaton gravity theories to study a late time, largeeSBHdouble scaled limit of the spectral form factor. In this limit, a novel cancellation due to the integrable structure ensures that at each genusgthe spectral form factor grows likeT2g+1, and that the sum over genera converges, realising a perturbative approach to the late-time plateau. Along the way, we clarify various aspects of this integrable structure. In particular, we explain the central role played by ribbon graphs, we discuss intersection theory, and we explain what the relations with dilaton gravity and matrix models are from a more modern holographic perspective.
more »
« less
- Award ID(s):
- 2014215
- PAR ID:
- 10477577
- Publisher / Repository:
- Springer-Verlag
- Date Published:
- Journal Name:
- Journal of High Energy Physics
- Volume:
- 2023
- Issue:
- 4
- ISSN:
- 1029-8479
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A<sc>bstract</sc> The planar integrability of$$ \mathcal{N} $$ = 4 super-Yang-Mills (SYM) is the cornerstone for numerous exact observables. We show that the large charge sector of the SU(2)$$ \mathcal{N} $$ = 4 SYM provides another interesting solvable corner which exhibits striking similarities despite being far from the planar limit. We study non-BPS operators obtained by small deformations of half-BPS operators withR-chargeJin the limitJ→ ∞ with$$ {\lambda}_J\equiv {g}_{\textrm{YM}}^2J/2 $$ fixed. The dynamics in thislarge charge ’t Hooft limitis constrained by a centrally-extended$$ \mathfrak{psu} $$ (2|2)2symmetry that played a crucial role for the planar integrability. To the leading order in 1/J, the spectrum is fully fixed by this symmetry, manifesting the magnon dispersion relation familiar from the planar limit, while it is constrained up to a few constants at the next order. We also determine the structure constant of two large charge operators and the Konishi operator, revealing a rich structure interpolating between the perturbative series at weak coupling and the worldline instantons at strong coupling. In addition we compute heavy-heavy-light-light (HHLL) four-point functions of half-BPS operators in terms of resummed conformal integrals and recast them into an integral form reminiscent of the hexagon formalism in the planar limit. For general SU(N) gauge groups, we study integrated HHLL correlators by supersymmetric localization and identify a dual matrix model of sizeJ/2 that reproduces our large charge result atN= 2. Finally we discuss a relation to the physics on the Coulomb branch and explain how the dilaton Ward identity emerges from a limit of the conformal block expansion. We comment on generalizations including the large spin ’t Hooft limit, the combined largeN-largeJlimits, and applications to general$$ \mathcal{N} $$ = 2 superconformal field theories.more » « less
-
Abstract In this paper we discuss dilaton shifts (Euler counterterms) arising in decomposition of two-dimensional quantum field theories with higher-form symmetries. Relative shifts between universes are fixed by locality and take a universal form, reflecting underlying (noninvertible, quantum) symmetries. The first part of this paper constructs a general formula for such dilaton shifts, and discusses related computations. In the second part of this paper, we comment on the relation between decomposition and ensembles.more » « less
-
A<sc>bstract</sc> We study two-point functions of symmetric traceless local operators in the bulk of de Sitter spacetime. We derive the Källén-Lehmann spectral decomposition for any spin and show that unitarity implies its spectral densities are nonnegative. In addition, we recover the Källén-Lehmann decomposition in Minkowski space by taking the flat space limit. Using harmonic analysis and the Wick rotation to Euclidean Anti de Sitter, we derive an inversion formula to compute the spectral densities. Using the inversion formula, we relate the analytic structure of the spectral densities to the late-time boundary operator content. We apply our technical tools to study two-point functions of composite operators in free and weakly coupled theories. In the weakly coupled case, we show how the Källén-Lehmann decomposition is useful to find the anomalous dimensions of the late-time boundary operators. We also derive the Källén-Lehmann representation of two-point functions of spinning primary operators of a Conformal Field Theory on de Sitter.more » « less
-
A<sc>bstract</sc> For any unitary conformal field theory in two dimensions with the central chargec, we prove that, if there is a nontrivial primary operator whose conformal dimension ∆ vanishes in some limit on the conformal manifold, the Zamolodchikov distancetto the limit is infinite, the approach to this limit is exponential ∆ = exp(−αt+O(1)), and the decay rate obeys the universal boundsc−1/2≤α≤ 1. In the limit, we also find that an infinite tower of primary operators emerges without a gap above the vacuum and that the conformal field theory becomes locally a tensor product of a sigma-model in the large radius limit and a compact theory. As a corollary, we establish a part of the Distance Conjecture about gravitational theories in three-dimensional anti-de Sitter space. In particular, our bounds onαindicate that the emergence of exponentially light states is inevitable as the moduli field corresponding totrolls beyond the Planck scale along the steepest path and that this phenomenon can begin already at the curvature scale of the bulk geometry. We also comment on implications of our bounds for gravity in asymptotically flat spacetime by taking the flat space limit and compare with the Sharpened Distance Conjecture.more » « less
An official website of the United States government

