skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Prospects for photon-pair generation using silicon microring resonators with two photon absorption and free carrier absorption
Silicon microring resonators are being recently used for high-brightness and efficient photon-pair generation at telecommunication wavelengths. Here, based on detailed theoretical and numerical modeling, we study the impact on pair generation of increasing the optical pump power, which generally causes nonlinear impairments such as free-carrier and two-photon absorption in silicon micro-resonators. Contrary to expectation, the pair generation properties of such devices may seem to be preserved at increasing pump powers, although not better than at a moderate pump power. These results suggest that silicon microrings can be used for pair generation over a wide range of pump powers, which may benefit applications in remotely pumped architectures, where the pump level might not be known a priori.  more » « less
Award ID(s):
1640968
PAR ID:
10145682
Author(s) / Creator(s):
;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
OSA Continuum
Volume:
3
Issue:
5
ISSN:
2578-7519
Format(s):
Medium: X Size: Article No. 1138
Size(s):
Article No. 1138
Sponsoring Org:
National Science Foundation
More Like this
  1. Photon-pair generation at telecommunication wavelengths using high-quality silicon microring resonators is an active area of research. Here, we report on significant progress towards the ultimate goal of an integrated silicon microchip for bright generation of photon pairs with multiple stages of tunable optical filtering on the same chip. A high pair generation brightness of 6.5×1010pairs/s/mW2/nm is achieved. The resonance of the high-Q silicon microring resonator can be monitored using a high dynamic range readout of a photocurrent in an all-silicon p-i-n diode fabricated across the waveguide cross-section, which is used to align the ring resonance to the passbands or stopbands of the filters. 
    more » « less
  2. We report photon pairs and heralded single photons generated at 1310 nm wavelengths using silicon photonics technology, demonstrating that comparable performance could be achieved when a silicon microring resonator was pumped either by a desktop laser instrument or by an electrically injected, room-temperature hybrid silicon laser. Measurements showed that 130 kilo-coincidence-counts per second pair rates could be generated, with coincidences-to-accidentals ratio approximately 100 at about 0.34 mW optical pump power and anti-bunching upon heralding with second-order intensity correlation g(2)(0) = 0.06 at about 0.9 mW optical pump power. These results suggest that hybrid silicon lasers, which are ultra-compact and wafer-scale manufacturable, could be used in place of packaged, stand-alone lasers for generating photon pairs at data communication wavelengths and enable large-scale, cost-effective manufacturing of integrated sources for quantum communications and computing. 
    more » « less
  3. Abstract Entanglement plays a vital role in quantum information processing. Owing to its unique material properties, silicon carbide recently emerged as a promising candidate for the scalable implementation of advanced quantum information processing capabilities. To date, however, only entanglement of nuclear spins has been reported in silicon carbide, while an entangled photon source, whether it is based on bulk or chip-scale technologies, has remained elusive. Here, we report the demonstration of an entangled photon source in an integrated silicon carbide platform for the first time. Specifically, strongly correlated photon pairs are efficiently generated at the telecom C-band wavelength through implementing spontaneous four-wave mixing in a compact microring resonator in the 4H-silicon-carbide-on-insulator platform. The maximum coincidence-to-accidental ratio exceeds 600 at a pump power of 0.17 mW, corresponding to a pair generation rate of (9 ± 1) × 103pairs/s. Energy-time entanglement is created and verified for such signal-idler photon pairs, with the two-photon interference fringes exhibiting a visibility larger than 99%. The heralded single-photon properties are also measured, with the heraldedg(2)(0) on the order of 10−3, demonstrating the SiC platform as a prospective fully integrated, complementary metal-oxide-semiconductor compatible single-photon source for quantum applications. 
    more » « less
  4. Abstract Superconducting resonators are widely used in many applications such as qubit readout for quantum computing, and kinetic inductance detectors. These resonators are susceptible to numerous loss and noise mechanisms, especially the dissipation due to two‐level systems (TLS) which become the dominant source of loss in the few‐photon and low temperature regime. In this study, capacitively‐coupled aluminum half‐wavelength coplanar waveguide resonators are investigated. Surprisingly, the loss of the resonators is observed to decrease with a lowering temperature at low excitation powers and temperatures below the TLS saturation. This behavior is attributed to the reduction of the TLS resonant response bandwidth with decreasing temperature and power to below the detuning between the TLS and the resonant photon frequency in a discrete ensemble of TLS. When response bandwidths of TLS are smaller than their detunings from the resonance, the resonant response and thus the loss is reduced. At higher excitation powers, the loss follows a logarithmic power dependence, consistent with predictions from the generalized tunneling model (GTM). A model combining the discrete TLS ensemble with the GTM is proposed and matches the temperature and power dependence of the measured internal loss of the resonator with reasonable parameters. 
    more » « less
  5. Intermodal four-wave mixing (FWM) process in few-mode fibers (FMFs) could be utilized for entangled photon-pair generation. Previous studies mainly performed in single-mode fibers suffered from the significant Raman scattering background from the glass fiber. Therefore, the instantaneous Raman and FWM effects would compete; this could be avoided in FMFs if the modal dispersion is larger than the Raman gain spectra. Utilizing two pumps in different modes in FMFs will generate photon pairs in various modes. Here, we study the effect of pump spectral separation on the intermodal FWM power and bandwidth using a seeding technique. It is concluded that the further the pumps and intermodal FWM idler and signal are from each other spectrally, the smaller the photon efficiency and larger the bandwidth. Experimental results for two FMFs of different differential mode group delay values are presented. 
    more » « less