Abstract Most ionospheric models cannot sufficiently reproduce the observed electron density profiles in the E‐region ionosphere, since they usually underestimate electron densities and do not match the profile shape. Mitigation of these issues is often addressed by increasing the solar soft X‐ray flux which is ineffective for resolving data‐model discrepancies. We show that low‐resolution cross sections and solar spectral irradiances fail to preserve structure within the data, which considerably impacts radiative processes in the E‐region, and are largely responsible for the discrepancies between observations and simulations. To resolve data‐model inconsistencies, we utilize new high‐resolution (0.001 nm) atomic oxygen (O) and molecular nitrogen (N2) cross sections and solar spectral irradiances, which contain autoionization and narrow rotational lines that allow solar photons to reach lower altitudes and increase the photoelectron flux. This work improves upon Meier et al. (2007,https://doi.org/10.1029/2006gl028484) by additionally incorporating high‐resolution N2photoionization and photoabsorption cross sections in model calculations. Model results with the new inputs show increased O+production rates of over 500%, larger than those of Meier et al. (2007,https://doi.org/10.1029/2006gl028484) and total ion production rates of over 125%, while production rates decrease by ∼15% in the E‐region in comparison to the results obtained using the cross section compilation from Conway (1988,https://apps.dtic.mil/sti/pdfs/ADA193866.pdf). Low‐resolution molecular oxygen (O2) cross sections from the Conway compilation are utilized for all input cases and indicate that is a dominant contributor to the total ion production rate in the E‐region. Specifically, the photoionization contributed from longer wavelengths is a main contributor at ∼120 km.
more »
« less
Topside Measurements at Jicamarca During the 2019–2020 Deep Solar Minimum
Abstract We present measurements of the equatorial topside ionosphere above Jicamarca made during extremely low solar flux conditions during the deep solar minimum of 2019–2020. Measurements were made in October, 2019, February, 2020, and September, 2020. The main features observed are a large and extended decrease in noontime temperatures unlike that seen in studies at moderate solar flux levels, predawn ionospheric heating as early as 0300 LT, large day‐to‐day variability in the O+/H+transition height, and negligible helium ion concentration at all altitudes. Data from the Ion Velocity Meter (IVM) instrument onboard the Ionospheric Connection Explorer (ICON) and the Topside Ionospheric Plasma Monitor (SSIES) onboard the Defense Meteorological Satellite Program (DMSP) satellites are used to assess agreement with ISR data and assist with the analysis of the predawn heating phenomena. We also analyze the data in light of the SAMI2‐PE model which shows less agreement with the data than at higher solar flux. The main areas of discrepancy with the data are outlined, such as the absence of significant predawn heating, less pronounced decreases in noontime temperatures, and much higher O+fractions at high altitudes, particularly in September. Finally, a sensitivity analysis of the model to various forcing agents such as neutral winds, plasma drifts, solar flux, and heat flow is performed. A discussion is presented on bridging the discrepancies in future model runs. Novel techniques of clutter removal and noise power bias correction are introduced and described in the appendices.
more »
« less
- Award ID(s):
- 1732209
- PAR ID:
- 10477645
- Publisher / Repository:
- American Geophysical Union
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Space Physics
- Volume:
- 126
- Issue:
- 12
- ISSN:
- 2169-9380
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract This study investigates the impact of vertical ionospheric drift during daytime on the evolution of predawn equatorial plasma bubbles by conducting model simulations using “Sami3 is Another Model of the Ionosphere.” The upward drift of the ionosphere transports bubbles to higher altitudes, where their lifetime is set by the atomic oxygen photoionization rate. While the bubbles generated at predawn persist into dayside, the bubbles generated shortly after sunset diminish before sunrise. Therefore, post‐sunset bubbles do not contribute to daytime electron density irregularities. Bubbles maintain their field‐aligned characteristics throughout the daytime regardless of the vertical ionospheric drift. This property allows bubbles to exist near the magnetic equator despite poleward plasma transport by the fountain process. The shift of irregularity concentration to higher latitudes over time in satellite observations is explained by the combined effect of transport of bubbles to higher altitudes and rapid refilling of depletions near the magnetic equator.more » « less
-
Abstract Stable auroral red (SAR) arcs are luminous subauroral emissions produced by the collisional excitation of oxygen atoms during geomagnetically active times. While traditionally attributed to inner magnetospheric electron heating, recent observations and simulations challenge the exclusivity of this mechanism. Here, we resolve the ionospheric origin of SAR arcs using multi‐instrument observations and numerical simulations during the March 2015 geomagnetic storm. Both magnetospheric heat flux and ion‐neutral frictional heating, driven by subauroral plasma flows, independently generate SAR arcs with intensities surpassing background airglow by hundreds of Rayleighs. While thermal electron impact dominates red‐line emissions in both cases, the vertical structures diverge: frictional heating localizes emissions to altitudes of 250–400 km, whereas magnetospheric heating extends emissions above ∼280 km with broader altitudinal coverage. These results redefine SAR arc generation as a product of competing magnetospheric and ionospheric energy pathways, advancing our understanding of cross‐scale interactions in geospace.more » « less
-
Abstract The optical and near-ultraviolet (NUV) continuum radiation in M-dwarf flares is thought to be the impulsive response of the lower stellar atmosphere to magnetic energy release and electron acceleration at coronal altitudes. This radiation is sometimes interpreted as evidence of a thermal photospheric spectrum withT≈ 104K. However, calculations show that standard solar flare coronal electron beams lose their energy in a thick target of gas in the upper and middle chromosphere (log10column mass/[g cm−2] ≲ −3). At larger beam injection fluxes, electric fields and instabilities are expected to further inhibit propagation to low altitudes. We show that recent numerical solutions of the time-dependent equations governing the power-law electrons and background coronal plasma (Langmuir and ion-acoustic) waves from Kontar et al. produce order-of-magnitude larger heating rates than those that occur in the deep chromosphere through standard solar flare electron beam power-law distributions. We demonstrate that the redistribution of beam energy aboveE≳ 100 keV in this theory results in a local heating maximum that is similar to a radiative-hydrodynamic model with a large, low-energy cutoff and a hard power-law index. We use this semiempirical forward-modeling approach to produce opaque NUV and optical continua at gas temperaturesT≳ 12,000 K over the deep chromosphere with log10column mass/[g cm−2] of −1.2 to −2.3. These models explain the color temperatures and Balmer jump strengths in high-cadence M-dwarf flare observations, and they clarify the relation among atmospheric, radiation, and optical color temperatures in stellar flares.more » « less
-
Abstract In van der Holst et al. (2019), we modeled the solar corona and inner heliosphere of the first encounter of NASA’s Parker Solar Probe (PSP) using the Alfvén Wave Solar atmosphere Model (AWSoM) with Air Force Data Assimilative Photospheric flux Transport–Global Oscillation Network Group magnetograms, and made predictions of the state of the solar wind plasma for the first encounter. AWSoM uses low-frequency Alfvén wave turbulence to address the coronal heating and acceleration. Here, we revise our simulations, by introducing improvements in the energy partitioning of the wave dissipation to the electron and anisotropic proton heating and using a better grid design. We compare the new AWSoM results with the PSP data and find improved agreement with the magnetic field, turbulence level, and parallel proton plasma beta. To deduce the sources of the solar wind observed by PSP, we use the AWSoM model to determine the field line connectivity between PSP locations near the perihelion at 2018 November 6 UT 03:27 and the solar surface. Close to the perihelion, the field lines trace back to a negative-polarity region about the equator.more » « less
An official website of the United States government

