skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Iron‐Catalyzed Gamma‐Gamma Dimerization of Siloxydienes
Abstract We report the oxidative dimerization reaction of siloxydienes derived from simple enones that creates a new gamma‐gamma (γ‐γ) C−C bond using catalytic iron and benzoyl peroxide as the terminal oxidant in acetonitrile solvent at ambient temperature. The reaction shows a broad substrate scope including cyclic and acyclic siloxydienes derived from ketones, aldehydes, and esters, which are converted to 1,8‐dicarbonyl compounds under mild catalytic reaction conditions in 19–89 % yield across 30 examples. The method is suitable for the coupling of sterically demanding carbon centers, including the formation of vicinal quaternary centers. Conceptually, the dienol ether serves as a precursor to a conjugated radical cation, which undergoes highly site selective γ‐dimerization reactions. The γ‐γ dimerization strategy is applied to the synthesis of a bioactive analogue of honokiol.  more » « less
Award ID(s):
2154880
PAR ID:
10477660
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Chemistry – A European Journal
Volume:
30
Issue:
5
ISSN:
0947-6539
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract. This work measured $$ \mathrm{d}\sigma/\mathrm{d}\Omega$$ d σ / d Ω for neutral kaon photoproduction reactions from threshold up to a c.m. energy of 1855MeV, focussing specifically on the $$ \gamma p\rightarrow K^0\Sigma^+$$ γ p → K 0 Σ + , $$ \gamma n\rightarrow K^0\Lambda$$ γ n → K 0 Λ , and $$ \gamma n\rightarrow K^0 \Sigma^0$$ γ n → K 0 Σ 0 reactions. Our results for $$ \gamma n\rightarrow K^0 \Sigma^0$$ γ n → K 0 Σ 0 are the first-ever measurements for that reaction. These data will provide insight into the properties of $$ N^{\ast}$$ N * resonances and, in particular, will lead to an improved knowledge about those states that couple only weakly to the $$ \pi N$$ π N channel. Integrated cross sections were extracted by fitting the differential cross sections for each reaction as a series of Legendre polynomials and our results are compared with prior experimental results and theoretical predictions. 
    more » « less
  2. Abstract The evolutionary path of massive stars begins at helium burning. Energy production for this phase of stellar evolution is dominated by the reaction path 3$$\alpha \rightarrow ^{12}$$ α 12 C$$(\alpha ,\gamma )^{16}$$ ( α , γ ) 16 O and also determines the ratio of$$^{12}$$ 12 C/$$^{16}$$ 16 O in the stellar core. This ratio then sets the evolutionary trajectory as the star evolves towards a white dwarf, neutron star or black hole. Although the reaction rate of the 3$$\alpha $$ α process is relatively well known, since it proceeds mainly through a single narrow resonance in$$^{12}$$ 12 C, that of the$$^{12}$$ 12 C$$(\alpha ,\gamma )^{16}$$ ( α , γ ) 16 O reaction remains uncertain since it is the result of a more difficult to pin down, slowly-varying, portion of the cross section over a strong interference region between the high-energy tails of subthreshold resonances, the low-energy tails of higher-energy broad resonances and direct capture. Experimental measurements of this cross section require herculean efforts, since even at higher energies the cross section remains small and large background sources are often present that require the use of very sensitive experimental methods. Since the$$^{12}$$ 12 C$$(\alpha ,\gamma )^{16}$$ ( α , γ ) 16 O reaction has such a strong influence on many different stellar objects, it is also interesting to try to back calculate the required rate needed to match astrophysical observations. This has become increasingly tempting, as the accuracy and precision of observational data has been steadily improving. Yet, the pitfall to this approach lies in the intermediary steps of modeling, where other uncertainties needed to model a star’s internal behavior remain highly uncertain. 
    more » « less
  3. Abstract Neutron-capture cross sections of neutron-rich nuclei are calculated using a Hauser–Feshbach model when direct experimental cross sections cannot be obtained. A number of codes to perform these calculations exist, and each makes different assumptions about the underlying nuclear physics. We investigated the systematic uncertainty associated with the choice of Hauser-Feshbach code used to calculate the neutron-capture cross section of a short-lived nucleus. The neutron-capture cross section for$$^{73}\hbox {Zn}$$ 73 Zn (n,$$\gamma $$ γ )$$^{74}\hbox {Zn}$$ 74 Zn was calculated using three Hauser-Feshbach statistical model codes: TALYS, CoH, and EMPIRE. The calculation was first performed without any changes to the default settings in each code. Then an experimentally obtained nuclear level density (NLD) and$$\gamma $$ γ -ray strength function ($$\gamma \hbox {SF}$$ γ SF ) were included. Finally, the nuclear structure information was made consistent across the codes. The neutron-capture cross sections obtained from the three codes are in good agreement after including the experimentally obtained NLD and$$\gamma \hbox {SF}$$ γ SF , accounting for differences in the underlying nuclear reaction models, and enforcing consistent approximations for unknown nuclear data. It is possible to use consistent inputs and nuclear physics to reduce the differences in the calculated neutron-capture cross section from different Hauser-Feshbach codes. However, ensuring the treatment of the input of experimental data and other nuclear physics are similar across multiple codes requires a careful investigation. For this reason, more complete documentation of the inputs and physics chosen is important. 
    more » « less
  4. Abstract The first example of PdII‐catalyzed γ‐C(sp3)−H functionalization of aliphatic and benzoheteroaryl aldehydes has been developed using a transient ligand and an external ligand, concurrently. A wide array of γ‐arylated aldehydes were readily accessed without preinstalling internal directing groups. The catalytic mechanism was studied by performing deuterium‐labelling experiments, which indicated that the γ‐C(sp3)−H bond cleavage is the rate‐limiting step during the reaction process. This reaction could be performed on a gram scale, and also demonstrated its potential application in the synthesis of new mechanofluorochromic materials with blue‐shifted mechanochromic properties. 
    more » « less
  5. ABSTRACT Flares from magnetically active dwarf stars should produce relativistic particles capable of creating γ-rays. So far, the only isolated main-sequence star besides the Sun to have been detected in γ-rays is TVLM 513−46546. Detecting γ-ray flares from more dwarf stars can improve our understanding of their magnetospheric properties, and could also indicate a diminished likelihood of their planets’ habitability. In this work, we stack data from the Fermi Gamma-ray Space Telescope during a large number of events identified from optical and X-ray flare surveys. We report an upper limit of γ-ray emission from the population of flare stars. Stacking results towards control positions are consistent with a non-detection. We compare these results to observed solar γ-ray flares and against a model of emission from neutral pion decay. The upper limit is consistent with solar flares when scaled to the flare energies and distances of the target stars. As with solar flares, the neutral pion decay mechanism for γ-ray production is also consistent with these results. 
    more » « less